Answer:
The correct option is C.
Explanation:
Carbohydrates are one of the macro molecules that are consumed by living organisms. The end product of carbohydrate is glucose. Glucose is a very important fuel that the body cells used to produce energy, which they use to carry out their daily activities. Glucose is also known as blood sugar and it is the only fuel that living cells can use for the production of ATP. Other food macro molecules such as lipids and proteins can also be converted to glucose if there is a need for that. Glucose is always stored in the body in form of glycogen.
The statement given in option C about glucose is wrong because glucose is a monosaccharide and not a disaccharide.
The concentration of [CI-] : 0.617 M
<h3>Further explanation</h3>
FeCl₃ dissolved in 450 mL of solution(will dissociate )
Reaction
FeCl₃⇒Fe³⁺+3Cl⁻
- mol FeCl₃(MW=162,2 g/mol)



Answer:
a. A reaction in which the entropy of the system increases can be spontaneous only if it is endothermic.
Explanation:
The change in free energy (ΔG) that is, the <u>energy available to do work</u>, of a system for a constant-temperature process is:

-
When ΔG < 0 the reaction is spontaneous in the forward direction.
- When ΔG > 0 the reaction is nonspontaneous. The reaction is
spontaneous in the opposite direction.
- When ΔG = 0 the system is at equilibrium.
If <u>both ΔH and ΔS are positive</u>, then ΔG will be negative only when the TΔS term is greater in magnitude than ΔH. This condition is met when T is large.
Answer:
The coefficient is 1
Explanation:
CaO(s) + CO2(g) -> CaCO3(s)
In the balanced equation, the coefficient for CaO is 1
The coefficient represents the number of moles of a compound in the stoichiometry of the reaction