Answer:
0.114m
Explanation:
From the general expression for the radius of the proton's resulting orbit, we have

where q is is the charge of the proton 
m is the mass of the proton 
B is the magnetic field 
and v i the speed.
to determine the speed, we use the expression
Kinetic Energy=

where <em>V </em>is the voltage value i.e 1.0kv
and v is the speed
Hence, from simple rearrangement we have the speed v to be

if we substitute value, we have

carrying out careful arithmetic we arrive at
.
using the value for the speed in the expression for the radius of the orbit as stated earlier, we have


Answer:
Explanation:
spring constant of spring = mg / x
= .4 x 9.8 / ( .95 - .65 )
=13.07 N / m
energy stored in spring = 1/2 k x²
= .5 x 13.07 x ( 1.2 - .65 )²
= 1.976 J
Let it goes x m beyond its equilibrium position
Total energy at initial point
= 1.976 + 1/2 m v²
= 1.976 + .5 x .4 x 1.6²
= 2.488 J
energy at final point
= mgh + 1/2 k x²
.4 x 9.8 x ( .55 + x ) + .5 x 13.07 x² = 2.488
6.535 x² + 2.156 + 3.92 x = 2.488
6.535 x² + 3.92 x - .332 = 0
x = .075 m
7.5 cm
Answer:
122.735 behind converging lens ; 2.16
Explanation:
Given tgat:
Object distance, u = 29 cm
Image distance, v =
Focal length, f = - 19 (diverging lens)
Mirror formula :
1/u + 1/v = 1/f
1/29 + 1/v = - 1/19
1/v = - 1/19 - 1/29
1/v = −0.087114
v = −11.47916
v = -11.48
Second lens
Object distance :
u = 11.48 + 11 = 22.48 cm
1/v = 1/19 - 1/22.48
1/v = 0.0081475
v = 1 / 0.0081475
v = 122.735 cm
122.735 behind second lens
Magnification, m
m = m1 * m2
m = - v / u
Lens1 :
m1 = -11.48 / 29 = - 0.3958620
m2 = - 122.735 / 22.48 = - 5.4597419
Hence,
- 0.3958620 * - 5.4597419 = 2.16
Resistance = (voltage) / (current)
For this piece of wire . . .
Resistance = (61 volts) / (6 Amperes)
Resistance = (61/6) (V/A)
<em>Resistance = (10 and 1/6) ohms</em>
Since you know the voltage and current, the length doesn't matter.
Answer:
The spring constant of the spring is 47.62 N/m
Explanation:
Given that,
Mass that is attached with the spring, m = 29 g = 0.029 kg
The spring makes 20 complete vibrations in 3.1 s. We need to find the spring constant of the spring. We know that the number of oscillations per unit time is called frequency of an object. So,

f = 6.45 Hz
The frequency of oscillator is given by :

k is the spring constant


k = 47.62 N/m
So, the spring constant of the spring is 47.62 N/m. Hence, this is the required solution.