As per the given chemical formula- Na2CO3.10H2O, one mole of the chemical compound contains 13 moles of oxygen atoms. Hence
Number of moles of oxygen atoms in one mole of Na2CO3.10H2O = 13
number of moles of oxygen atoms in 0.2 moles of Na2CO3.10H2O = 13 X 0.2 = 2.6
Now, one mole of a substance contains 6.022 X 10^23 particles of the substance. Thus
number of atoms of oxygen in one mole of oxygen atom = 6.022 X 10^23
number of moles of oxygen atoms in 2.6 moles of oxygen atoms = 2.6 X 6.022 X 10^23 = 15.657 X 10^23
= 1.566 X 10^24
Thus, there are 1.566 X 10^24 atoms of oxygen in 0.2 moles of Na2CO3.10H2O.
4.7
Answer:
Y is a 3-chloro-3-methylpentane.
The structure is shown in the figure attached.
Explanation:
The radical chlorination of 3-methylpentane can lead to a tertiary substituted carbon (Y) and to a secondary one (X).
The E2 elimination mechanism, as shown in the figure, will happen with a simulyaneous attack from the base and elimination of the chlorine. This means that primary and secondary substracts undergo the E2 mechanism faster than tertiary substracts.
Yes it is polluting the river with everything the manufaturing plant gives off such as the chemicals released in the air
Jonathan is not correct because it has to be a trait that is learned.
So in that case Jonathan has to say that this is not an inherited trait it is learned by most people.
Answer:
Adding salt to the water increases the density of the solution because the salt increases the mass without changing the volume very much. When you add table salt (sodium chloride, NaCl) to water, the salt dissolves into ions, Na+ and Cl-. The volume increases by a small factor, but the mass increases by a bigger factor.
Explanation: