I think you mean the Cryosphere?
But the answer is D- Earths Ice
This word Cryosphere comes from the greek word "kryos" which means cold
Many people think of the cryosphere as being the north and south poles but snow and ice can be found in a lot of places on the Earth
I think It would be C. Checking a prediction. Sorry if I’m wrong
Answer:
s = 589.3 m
Explanation:
Let the truck and car meet at a distance = s m
The truck is moving at constant velocity = v
so s= v * t ---------- (1)
car:
Vi = 0 m/s
a = 3.9 m/s²
s = Vi* t + 1/2 a t²
s= 0 * t + 1/2 a t²
s = 1/2 a t² ----------- (2)
compare equation (1) and equation (2)
s= v * t = 1/2 a t²
⇒ v * t = 1/2 a t²
⇒ t = 2 * v/ a
⇒ t = (2 * 33.9 )/ 3.9
⇒ t = 17. 38 s
Now
from equation (1)
s= v * t
s= 33.9 * 17.38
⇒ s = 589.3 m
Answer:
serie Ceq=0.678 10⁻⁶ F and the charge Q = 9.49 10⁻⁶ C
Explanation:
Let's calculate all capacity values
a) The equivalent capacitance of series capacitors
1 / Ceq = 1 / C1 + 1 / C2 + 1 / C3 + 1 / C4 + 1 / C5
1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 1 / 6.2 + 1 / 6.2
1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 2 / 6.2
1 / Ceq = 0.666 + 0.3030 +0.1818 +0.3225
1 / Ceq = 1,147
Ceq = 0.678 10⁻⁶ F
b) Let's calculate the total system load
Dv = Q / Ceq
Q = DV Ceq
Q = 14 0.678 10⁻⁶
Q = 9.49 10⁻⁶ C
In a series system the load is constant in all capacitors, therefore, the load in capacitor 5.5 is Q = 9.49 10⁻⁶ C
c) The potential difference
ΔV = Q / C5
ΔV = 9.49 10⁻⁶ / 5.5 10⁻⁶
ΔV = 1,725 V
d) The energy stores is
U = ½ C V²
U = ½ 0.678 10-6 14²
U = 66.4 10⁻⁶ J
e) Parallel system
Ceq = C1 + C2 + C3 + C4 + C5
Ceq = (1.5 +3.3 +5.5 +6.2 +6.2) 10⁻⁶
Ceq = 22.7 10⁻⁶ F
f) In the parallel system the voltage is maintained
Q5 = C5 V
Q5 = 5.5 10⁻⁶ 14
Q5 = 77 10⁻⁶ C
g) The voltage is constant V5 = 14 V
h) Energy stores
U = ½ C V²
U = ½ 22.7 10-6 14²
U = 2.2 10⁻³ J
The approximate speed of the sound wave traveling through the solid material is 1012m/s.
<h3>
Wavelength, Frequency and Speed</h3>
Wavelength is simply the distance over which the shapes of waves are repeated. It is the spatial period of a periodic wave.
From the wavelength, frequency and speed relation,
λ = v ÷ f
Where λ is wavelength, v is velocity/speed and f is frequency.
Given the data in the question;
- Frequency of sound wave f = 440Hz = 440s⁻¹
- Wavelength of the wave λ = 2.3m
To determine the approximate speed of the wave, we substitute our given values into the expression above.
λ = v ÷ f
2.3m = v ÷ 440s⁻¹
v = 2.3m × 440s⁻¹
v = 1012ms⁻¹
v = 1012m/s
Therefore, the approximate speed of the sound wave traveling through the solid material is 1012m/s.
Learn more about Speed, Frequency and Wavelength here: brainly.com/question/27120701