Answer:
Tt = 70 + 135e^-0.031t
13 minutes
Explanation:
Given that :
Initial temperature, Ti = 205°
Temperature after 2.5 minutes = 195°
Temperature of room, Ts= 70
Using the relation :
Tt = Ts + Ce^-kt
Temperature after time, t
When freshly poured, t = 0
205 = 70 + Ce^-0k
205 = 70 + C
C = 205 - 70 = 135°
T after 2.5 minutes to find proportionality constant, k
Tt = Ts + Ce^-kt
195 = 70 + 135e^-2.5k
125 = 135e^-2.5k
125 / 135 = e^-2.5k
0.9259 = e^-2.5k
Take In of both sides :
−0.076989 = - 2.5k
k = −0.076989 / - 2.5
k = 0.031
Equation becomes :
Tt = 70 + 135e^-0.031t
t when Tt = 160
160 = 70 + 135e^-0.031k
90 = 135e^-0.031t
90/135 = e^-0.031t
0.6667 = e^-0.031t
In(0.6667) = - 0.031t
−0.405465 = - 0.031t
t = 0.405465/ 0.031
t = 13.071
t = 13 minutes
You multiply force times friction
Answer:
1.#(#('#;#+#('#;#+jwhsjjshajahkqhwmskek
Explanation:
jsjsnanakamakwjKbakqwigjgodrgoshoihrdohrf
tjfjrhgcorfhptgkc
jv
tgj
crlfkhc
rjv
tkgjv
kyjv
tgjvhrlkrfjhirghogrtiguotightjptrjpghpf
rofrirhfohrihithfitgprirl
ceohr
fbojofjigoitigotjog
irojfofjkrhrjoejoqjodirnkfnkrjoritpruixhor
- firhofeiidiehdijeihr
- jdhxjdhjchfihvidjfdoigorjgiifugiruogu
- ifgijrojiru
bifjibjtgitkriwgi eror iurh oryi ehiwyrfoerhfoefoeuis in het begin van een tui ueen uitgebreide beschrijving ygt grup u een uitgebreide keuze u guugu
sjksjsosjsnshf ruor uw eigen website aanmaken r y fav u can u to uf the owner u will tu tutururu ba sa inyo ay walang naging y rin h results ry from y yifuirfjofjkrjirhieifr Fu t I
Well, that would be a plane (flat) mirror
<span>provided that </span>
<span>the mirror and the object are oriented parallel to each other</span>
Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2