1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Solnce55 [7]
3 years ago
10

Natural selection allows populations to (2 points)

Physics
1 answer:
Dahasolnce [82]3 years ago
3 0
<span>
adapt to a changing environment

</span><span>organisms that possess heritable traits that enable them to better adapt to their environment </span>
You might be interested in
A constellation’s changing position in the sky, at the same time of the evening, over a period of several weeks is evidence that
Goryan [66]

Answer:

d- Earth revolves around the sun.

Explanation:

Earth rotation can be defined as the amount of time taken by planet earth to complete its spinning movement on its axis.

This ultimately implies that, the rotation of earth refers to the time taken by earth to rotate once on its axis. One spinning movement of the earth on its axis takes approximately 24 hours to complete with respect to the sun.

On the other hand, earth revolution can be defined as a complete trip along a path around the sun. This path is known as an orbit and it typically takes the Earth 365¼ days to complete it's journey around the Sun.

When a constellation (stars) changes its position in the sky, at the same time of the evening and over a period of several weeks; it ultimately implies or is an evidence that Earth revolves around the sun.

8 0
3 years ago
How will a current change if the resistance of a circuit remains constant while the voltage across the circuit decreases to half
beks73 [17]

Answer:

1. The current will drop to half of its original value.

Explanation:

The problem can be solved by using Ohm's law:

V=RI

where

V is the voltage across the circuit

R is the resistance of the circuit

I is the current

We can rewrite it as

I=\frac{V}{R}

In this problem, we have:

- the resistance of the circuit remains the same: R' = R

- the voltage is decreased to half of its original value: V'=\frac{V}{2}

So, the new current will be

I'=\frac{V'}{R'}=\frac{V/2}{R}=\frac{1}{2}\frac{V}{R}=\frac{I}{2}

so, the current will drop to half of its original value.

4 0
3 years ago
The emf induced in a coil that is rotating in a magnetic field will be at a maximum at which moment?
adelina 88 [10]
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.

To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:

e = -N•dI/dt; dI = ABcos(theta)

where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.

Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

Hope this helps!
6 0
3 years ago
what equastion do you use to solve Riders in a carnival ride stand with their backs against the wall of a circular room of diame
Hitman42 [59]

Answer:

μsmín = 0.1

Explanation:

  • There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
  • This friction force has a maximum value, that can be written as follows:

       F_{frmax} = \mu_{s} *F_{n} (1)

       where  μs is the coefficient of static friction, and Fn is the normal force,

       perpendicular to the wall and aiming to the center of rotation.

  • This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
  • This force has the following general expression:

       F_{c} =  m* \omega^{2} * r (2)

       where ω is the angular velocity of the riders, and r the distance to the

      center of rotation (the  radius of the circle), and m the mass of the

      riders.

      Since Fc is actually Fn, we can replace the right side of (2) in (1), as

      follows:

     F_{frmax} = m* \mu_{s} * \omega^{2} * r (3)

  • When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

       m* g = m* \mu_{smin} * \omega^{2} * r (4)

  • (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
  • Cancelling the masses on both sides of (4), we get:

       g = \mu_{smin} * \omega^{2} * r (5)

  • Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

      60 rev/min * \frac{2*\pi rad}{1 rev} *\frac{1min}{60 sec} =6.28 rad/sec (6)

  • Replacing by the givens in (5), we can solve for μsmín, as follows:

       \mu_{smin} = \frac{g}{\omega^{2} *r}  = \frac{9.8m/s2}{(6.28rad/sec)^{2} *2.5 m} =0.1 (7)

5 0
3 years ago
A plot of land has been surveyed for a new housing development with borders AB, BC, DC, and DA. The plot of land is a right trap
balandron [24]

Angle ABC is 119

Length of DC is 105

6 0
3 years ago
Read 2 more answers
Other questions:
  • An egg is cracked/broken. Is this egg experiencing a Physical or Chemical change? (Hint: is it still an egg?)
    7·1 answer
  • Two converging lenses, one with f = 4.0 cm and the other with f = 37 cm , are made into a telescope. What is the length of this
    12·1 answer
  • Most cancer-causing air pollutants are found outdoors. True False
    11·2 answers
  • A "swing" ride at a carnival consists of chairs that are swung in a circle by 19.6 m cables attached to a vertical rotating pole
    8·2 answers
  • One of the 63.5-cm-long strings of an ordinaryguitar is tuned to produce the note {\rm B_3}(frequency 245 Hz) when vibrating ini
    7·1 answer
  • All waves transfer____. Energy weight velocity mass
    9·1 answer
  • The light bulb transfers electrical energy into light. What is one type of energy that is also generated that is NOT a desired e
    13·2 answers
  • A tourist being chased by an angry bear is running in a straight line toward his car at a speed of 3.60 m/s. The car is a distan
    7·1 answer
  • EM waves consist of changing electric and magnetic fields moving perpendicular with respect to each other. What kind of wave is
    7·1 answer
  • After a wave passes through a medium, particles in the medium
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!