Answer:
0.00712 m
Explanation:
Given:
Charge on first particle (q₁) = 75 nC = 
Charge on second particle (q₂) = 75 nC = 
Force (F) = 1.00 N
Separation (d) = ?
The magnitude of force is given by Coulomb's law which states that, the magnitude of force acting between two charged particles separated by a distance is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them.
Therefore, the magnitude of force is given as:

Where,
is the coulomb's constant.
Plug in the given values and solve for 'd'. This gives,

Therefore, the distance between the charges is 0.00712 m.
A person standing on the moon watching the earth rotate
The given problem can be exemplified in the following diagram:
Since there is no friction or any other external force, the only force acting in the direction of the movement is the component of the weight of the block, therefore, applying Newton's second law:

Replacing the values:

We may cancel out the mass:

Using the gravity constant as 9.8 meters per square second:

Solving the operations:

Therefore, the acceleration is 6.3 meters per square second.
Answer: the ladder
Explanation: since the energized conductor is already in contact with the ladder there by making electric current to flow. The base of the ladder is on the ground there by making the circuit to be complete and causing electrocution.
Answer:
The induced current is 26.7 mA
Explanation:
Given;
area of the loop, A = 0.078 m²
initial magnetic field, B₁ = 3.8 T
change in the magnetic field strength, dB/dt = 0.24 T/s
The induced emf is calculated as;

The resistance of the loop = 0.7 Ω
The induced current is calculated as;
