Very very roughly, an Earth month.
The Sun isn't solid, so it doesn't all have to rotate at the same rate. Different latitudes actually rotate at different speeds. One complete rotation is about 24 days at the Sun's equator, but 35 days near the poles !
Answer:
The initial angular speed of the CD is equal to 14.73 rad/s.
Explanation:
Given that,
Angular displacement, 
Final angular speed, 
The acceleration of the CD,
We need to find the initial angular speed of the CD. Using third equation of kinematics to find it such that,

Put all the values,

So, the initial angular speed of the CD is equal to 14.73 rad/s.
Answer:

Explanation:
Given that
V= 12 V
K=3
d= 2 mm
Area=5.00 $ 10#3 m2
Assume that
$ = Multiple sign
# = Negative sign

We Capacitance given as
For air







Net capacitance
C=C₁+C₂

We know that charge Q given as
Q= C V


Frequency refers to the number of wavelengths that pass a fixed point in a minute. true or false
Answer:True
Answer:
Time is 14.8 s and cannot landing
Explanation:
This is a kinematic exercise with constant acceleration, we assume that the acceleration of the jet to take off and landing are the same
Calculate the time to stop, where it has zero speed
Vf² = Vo² + a t
t = - Vo² / a
t = - 110²/(-7.42)
t = 14.8 s
This is the time it takes to stop the jet
Let's analyze the case of the landing at the small airport, let's look for the distance traveled to land, where the speed is zero
Vf² = Vo² + 2 to X
X = -Vo² / 2 a
X = -110² / 2 (-7.42)
X = 815.4 m
Since this distance is greater than the length of the runway, the jet cannot stop
Let's calculate the speed you should have to stop on a track of this size
Vo² = 2 a X
Vo = √ (2 7.42 800)
Vo = 109 m / s
It is conclusion the jet must lose some speed to land on this track