Reaction equations contains symbols which show the physical state of the reactants and products.
<h3>What is a chemical equation:</h3>
A chemical equation is an expression that shows the interaction of reactants to yield products. Usually, symbols such as (s), (l), (g), and (aq) are used to show the state of the reactants and products.
The following are the respective meanings of these symbols;
- (s) - solid
- (l) - Liquid
- (g) - gas
- (aq) - dissolved in water
Learn more about reaction equations: brainly.com/question/1170557
Answer:
520ML and apparently I need to put more in this answer
Explanation:
brainly.com
Molar mass of NH_3



We know.
No of moles=Given mass/Molar mass


Now
Lets write the balanced equation

- There is 2moles of Ammonia
- 3moles of H_2
- 1mole of N_2
Now

For Hydrogen



For Ammonia



For Nitrogen


If the temperature of a liquid-vapor system at equilibrium increases, it will shift towards the vapor phase, assuming that the pressure remains equal. The concentration of vapor will also increase relative to the concentration of liquid in the system. Thus, the new equilibrium condition will have more vapor than liquid.