Answer:
15912 × 10∧-19 KJ
Explanation:
Given data;
frequency of photon = 2.4 × 10^18 1/s.
Planck's constant = 6.63 × 10∧-34 j.s
Energy = ?
Formula:
E = h × ν
E = 6.63 × 10∧-34 j.s × 2.4 × 10^18 1/s
E= 15.912 × 10∧-16 j
now we will convert the joule into kilo joule,
E = 15.912 × 10∧-16 j /1000 = 15.912 × 10∧-19 KJ
Water is called the "universal solvent" because it is capable of dissolving more substances than any other liquid. This is important to every living thing on earth. It means that wherever water goes, either through the air, the ground, or through our bodies, it takes along valuable chemicals, minerals, and nutrients.
A carbonate because the oxygen neutralizes the reactive coding of the calcium in its original form.
<span>C2H5
First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2.
Carbon = 12.0107
Hydrogen = 1.00794
Oxygen = 15.999
Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488
Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087
Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass.
moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles
moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles
The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule.
Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen.
moles C = 0.50899
moles H = 0.638361 * 2 = 1.276722
We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon.
total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185
7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked.
Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen.
0.50899 / 1.276722 = 0.398669
0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5.
Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is
C2H5</span>
Answer:
The correct answer is D
Explanation:
Many substances hold their molecules together in the liquid or solid bosom. This is due, in addition to the pressure and temperature conditions, by the forces of Van der Waals. These are still produced in nonpolar molecules by the movement of electrons through the molecules; in extremely short periods of time, their electrons "charge" towards one end of the molecule, producing small dipoles and keeping the molecules very close to each other.