It is a global issue that is impacting WA’s water supply and our way of life. The impacts are felt across the world, Australia, and throughout WA in our communities, businesses, farms and homes.
Answer:
THE MOLAR MASS OF THE GAS IS 147.78 G/MOLE
Explanation:
Using PV = nRT
n = Mass / molar mass
P = 732.6 mmHg = 1 atm = 760 mmHg
So therefore 732.6 mmHg will be equal to 732.6 / 760 = 0.964 atm
P = 0.964 atm
V = 275 mL = 275 *10 ^-3 L
R = 0.082 Latm/ mol K
T = -28 C = 273 - 28 K = 245 K
mass = 1.95 g
molar mass = unknown
Having known the other variables in the formula, the molar mass of the gas can be obtained.
PV = m R T/ molar mass
Molar mass = m RT / PV
Molar mass = 1.95 * 0.082 * 245 / 0.964 * 275 *10^-3
Molar mass = 39.1755 / 265.1 *10^-3
Molar mass = 39.1755 / 0.2651
Molar mass = 147.78 g/mol
The molar mass of the gas is 147.78 g/mol
Answer : The molecular formula of a compound is, 
Solution : Given,
Mass of C = 64.03 g
Mass of H = 4.48 g
Mass of Cl = 31.49 g
Molar mass of C = 12 g/mole
Molar mass of H = 1 g/mole
Molar mass of Cl = 35.5 g/mole
Step 1 : convert given masses into moles.
Moles of C = 
Moles of H = 
Moles of Cl = 
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = 
For H = 
For Cl = 
The ratio of C : H : Cl = 6 : 5 : 1
The mole ratio of the element is represented by subscripts in empirical formula.
The Empirical formula = 
The empirical formula weight = 6(12) + 5(1) + 1(35.5) = 112.5 gram/eq
Now we have to calculate the molecular formula of the compound.
Formula used :


Molecular formula = 
Therefore, the molecular of the compound is, 