To get the molecular formula we use the individual atomic masses of the atoms making the molecule. Hence, to get the factor by which the empirical formula is multiplied, we divide molar mass by the total of the mass of the atoms making the empirical formula.
(C2H7) the mass of one carbon atoms is 12 so two atoms add up to 24. The mass of one hydrogen atom is 1 a.m.u thus 7 atoms give a total of 7 a.m.u. The sum of the two types of atoms is 24+7= 31
Molar mass=62.18
62.18/31=2.0
Hence, (C2H7) 2=C4H14
What’s the question sweetheart...?...There’s no question or picture to answer
Answer: The forward and reverse reactions eventually reach the same rate.
Explanation:
The reactions which do not go on completion and in which the reactant forms product and the products goes back to the reactants simultaneously are known as equilibrium reactions.
Equilibrium state is the state when reactants and products are present but the concentrations does not change with time.
The equilibrium is dynamic in nature and the reactions are continuous in nature. Rate of forward reaction is equal to the rate of backward reaction and it appears as it has stopped.
H₂ is the limiting reactant.
<u>Explanation:</u>
H₂ reacts with O₂
The reaction would be
2H₂ + O₂ → 2H₂O
According to the balanced equation, 2 moles of H₂ reacts with 1 mole of O₂ to form 2 moles of H₂O.
The ratio of usage of H₂ and O₂ is 2 : 1 respectively
If 3 moles of H₂ and 2 moles of O₂ are present then:
3 moles of H₂ would require 1.5 moles of O₂ ( 2 : 1 of H₂ and O₂ )
Out of 2 moles of O₂, 1.5 moles would be used and 0.5 mole would be in excess.
Therefore, H₂ is the limiting reactant as the number of moles of H₂ are not enough to use all the O₂.