1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
3 years ago
12

A block of ice with mass 2.00 kg slides 0.750 m down an inclined plane that slopes downward at an angle of 36.9 degrees below th

e horizontal. If the block of ice starts from rest, what is its final speed? You can ignore friction.

Physics
1 answer:
zhannawk [14.2K]3 years ago
6 0

Answer: V_{f}=2.96m/s    

Firstly we have to draw the Free Body Diagram (FBD) as shown in the figure attached.

Where the weight w of the block has an x-component and y-component:

w_{x}=wsin(\theta)    (1)

w_{y}=wcos(\theta)    (2)

As well as the Normal Force N:

N_{x}=Nsin(\theta)    (3)

N_{y}=Ncos(\theta)    (4)

In addition, we know N=w, then \sum F_{y}=0

In the X-component:

\sum F_{x}=m.a

m.a=w_{x}    (5)

Substituting (1) in (5):

wsin(\theta)=m.a    (6)

In addition, we know w=m.g, where m is the mass of the block and g the gravity acceleration, which is equal to 9.8m/{s}^{2}  

So:

m.g.sin(\theta)=m.a   (7)

a=g.sin(\theta)    (8)

a=5.88m/{s}^{2}    (9)   >>>>This is the acceleration of the block

On the other hand, we have the following equation that expresses a <u>relation between</u> the distance d with the acceleration a and time t:

d=\frac{1}{2}a{t}^{2}   (10)

We already know the value of  d and calculated a, we have to find t:

t=\sqrt{\frac{2d}{a}}   (11)

t=\sqrt{\frac{2(0.75m)}{5.88m/{s}^{2}}}   (12)

t=0.50s   (13) >>>This is the time it takes to the block to go from the initial velocity V_{o} to its final velocity V_{f}

If the acceleration is the variation of the velocity in time, we can use the following equation to find V_{f}:

V_{f}-V_{o}=a.t   (13)

If V_{o}=0

V_{f}=a.t   (14)

V_{f}=(5.88m/{s}^{2})(0.50s)   (15)

Finally we get the value of the Final Velocity of the block:

V_{f}=2.96m/s    

You might be interested in
Is the stomach just below the waist?
Blizzard [7]
The stomach is above the waist, below the waist is your, yunno. the stomach and bladder sit right on top of the waist, hope this helps, have an amazing day:)
5 0
3 years ago
Which of the following is the best definition of a closed system?
lisov135 [29]

The answer is either

b A system in which Newton's Laws are valid

or

c A system in which there are no external forces.

Explanation:

not a, and not d

There are energy changes in a closed system.

A closed system obeys the conservation laws in its physical description.

4 0
3 years ago
Answer the question based on this waveform.
Nuetrik [128]

Answer:

Cannot be determined from the given information

Explanation:

Given the following data;

Velocity = 24 m/s

Period = 3 seconds

To find the amplitude of the wave;

Mathematically, the amplitude of a wave is given by the formula;

x = Asin(ωt + ϕ)

Where;

x is displacement of the wave measured in meters.

A is the amplitude.

ω is the angular frequency measured in rad/s.

t is the time period measured in seconds.

ϕ is the phase angle.

Hence, the information provided in this exercise isn't sufficient to find the amplitude of the waveform.

However, the given parameters can be used to calculate the frequency and wavelength of the wave.

6 0
3 years ago
Ask Your Teacher A basketball player shoots toward a basket 5.8 m away and 3.0 m above the floor. If the ball is released 1.7 m
const2013 [10]

Answer:

The answer to your question is    vo = 5.43 m/s

Explanation:

Data

distance = d= 5.8 m

height = 3 m

height 2 = 1.7 m

angle = 60°

vo = ?

g = 9.81 m/s²

Formula

              hmax = vo²sinФ/ 2g

Solve for vo²

              vo² = 2ghmax / sinФ

Substitution

              vo² = 2(9.81)(3 - 1.7) / 0.866

Simplification

              vo² = 19.62(1.3) / 0.866

              vo² = 25.51 / 0.866

              vo² = 29.45

Result

              vo = 5.43 m/s

               

5 0
3 years ago
QUESTION 1
Sveta_85 [38]

distance from the Sun of 2.77 astronomical units or about 414 million km 257 million miles and orbiting period of 4.62 years

7 0
3 years ago
Other questions:
  • Odyssey Quiz
    10·1 answer
  • HELP ASAP PLS! GIVING BRAINLIEST!!
    5·2 answers
  • 5.Calculate the entropy changes for the following processes:(a)Melting of one mole of tin at its melting point, 213 ᵒC; ΔHfus =
    8·1 answer
  • Which of the following is the best reason that scientific models are used? (1 point)
    9·2 answers
  • A bullet is at rest. It travels a distance of 0.34m in a time of 0.0095 seconds. Calculate its acceleration.
    8·1 answer
  • A baseball with a mass of 142 grams is thrown across a field. It accelerates at a rate of 8 m/s^2. What is the force acting on t
    13·1 answer
  • A horizontal metal bar oriented east-west drops straight down in a location where the earth's magnetic field is due north. as a
    12·1 answer
  • Anybody wanna help? (Picture Included?)
    15·1 answer
  • HELP!! WILL MARK BRAINLIEST!!!!!
    9·1 answer
  • A treasure map directs you to start at palm tree
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!