Initially, the velocity vector is
. At the same height, the x-value of the vector will be the same, and the y-value will be opposite (assuming no air resistance). Assuming perfect reflection off the ground, the velocity vector is the same. After 0.2 seconds at 9.8 seconds, the y-value has decreased by
, so the velocity is
.
Converting back to direction and magnitude, we get 
<span>The true brightness of an object
is called its luminosity. It is the total amount of energy emitted by bright or
meteorological objects over a period of time. It has the SI unit of joules per
second or watts. So the answer is letter A. Intensity is the measure of how
strong the substance or object is when it projects something. Magnitude is a
measure of how great is the size the object produces. Viscosity is the measure
of flow of a substance.</span>
If the period of a satellite is T=24 h = 86400 s that means it is in geostationary orbit around Earth. That means that the force of gravity Fg and the centripetal force Fcp are equal:
Fg=Fcp
m*g=m*(v²/R),
where m is mass, v is the velocity of the satelite and R is the height of the satellite and g=G*(M/r²), where G=6.67*10^-11 m³ kg⁻¹ s⁻², M is the mass of the Earth and r is the distance from the satellite.
Masses cancel out and we have:
G*(M/r²)=v²/R, R=r so:
G*(M/r)=v²
r=G*(M/v²), since v=ωr it means v²=ω²r² and we plug it in,
r=G*(M/ω²r²),
r³=G*(M/ω²), ω=2π/T, it means ω²=4π²/T² and we plug that in:
r³=G*(M/(4π²/T²)), and finally we take the third root to get r:
r=∛{(G*M*T²)/(4π²)}=4.226*10^7 m= 42 260 km which is the height of a geostationary satellite.
Answer:
D.
Explanation:
A solar system is a collection of planets, their moons, and other objects in orbit around a central star.
Answer:i have none but good luck also this is a learning site ;-;
Explanation: