Answer: 17.83 AU
Explanation:
According to Kepler’s Third Law of Planetary motion <em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”. </em>
(1)
Talking in general, this law states a relation between the <u>orbital period</u>
of a body (moon, planet, satellite, comet) orbiting a greater body in space with the <u>size</u>
of its orbit.
However, if
is measured in <u>years</u>, and
is measured in <u>astronomical units</u> (equivalent to the distance between the Sun and the Earth:
), equation (1) becomes:
(2)
This means that now both sides of the equation are equal.
Knowing
and isolating
from (2):
(3)
(4)
Finally:
(5)
Answer:
I don't know but I will try:
because the red color from the density column.
mass density orbit time temperature surface conditions
distyance from sun
Hope this helps :)
When describing linear motion, you need only one graph representing each of the three terms, while projectile motion requires a graph of the x and y axes. Graphs of simple harmonic motion are sine curves. Circular motion is different from other forms of motion because the speed of the object is constant.
Use conservation of momentum ;
m1u1 + m2u2 = m1v1 + m2v2
1200×15.6 + 0 = 2700v
v = 18720/2700
v = 6.933 or ~ 7 m/s