Answer:
The planet will move from east to west for a couple of months in the night sky.
Explanation:
Retrograde motion is an optical effect due to the fact that Earth rotates more quickly than the planet that apparently has a retrograde motion in the sky.
For example, Saturn has a slower speed in its orbit around the Sun. That means that the Earth will pass it, and that will give the effect that the planet is moving backward. That same scenario can be seen between two cars on a highway, the faster car will see the slower car when it passes as it is moving for a short fragment of time in backward.
Remember that the planets in the night sky move from west to east, in the case of a planet with retrograde motion, it will move from east to west for a couple of months.
Answer:
Intensity
Explanation:
The intensity of a sound wave is equal to the ratio between to the power emitted by the source divided by the area of the spherical surface through which the wave propagates:

where
P is the power
is the area of the spherical surface
r is the distance from the source
As we see from the formula, the intensity is inversely proportional to the square of the distance from the source:

so, intensity is the correct answer.
Yes, all of these could be applied to a roller coaster.
This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute