Answer:
The beam used is a negatively charged electron beam with a velocity of
v = E / B
Explanation:
After reading this long statement we can extract the data to work on the problem.
* They indicate that when the beam passes through the plates it deviates towards the positive plate, so the beam must be negative electrons.
* Now indicates that the electric field and the magnetic field are contracted and that the beam passes without deviating, so the electric and magnetic forces must be balanced

q E = qv B
v = E / B
this configuration is called speed selector
They ask us what type of beam was used.
The beam used is a negatively charged electron beam with a velocity of v = E / B
Answer:
4 km/hr
Explanation:
The computation of the actual velocity is shown below:
Because the path of its paddles is opposed to the current direction, the real velocity can be determined by deducting the current velocity to its velocity while paddling
So, the actual velocity is
= Upstream - downstream
= 19 km/hr - 15 km/hr
= 4 km/hr
As we can see it is in positive, so it is an upstream direction
Your answer is A
Pls mark me brainiest and I sure hope this helps you
Electric force from electomagnetic force and force of gravity from gravitational force
Answer:
The rate of heat removed from inside the refrigerator is 300 watts.
Explanation:
By the First Law of Thermodynamics and the definition of a Refrigeration Cycle, we have the following formula to determine the rate of heat removed from inside the refrigerator (
), in watts:
(1)
Where:
- Rate of heat released to the room, in watts.
- Rate of electric energy needed by the refrigerator, in watts.
If we know that
and
, then the rate of heat removed from inside the refrigerator is:


The rate of heat removed from inside the refrigerator is 300 watts.