Answer:
0.2932 rad/s
Explanation:
r = Radius = 2 m
= Initial angular momentum = 
= Initial angular velocity = 14 rev/min
= Final angular momentum
= Final angular velocity
Here the angular momentum of the system is conserved

The final angular velocity is 0.2932 rad/s
<span>The answer would be convection currents. Convection happens when atoms with a lot of heat energy in a liquid or gas transfer and get the room of particles with fewer heat energy. Heat energy is transported from hot places to cooler places by convection.</span>
Answer:
3.15m³
Explanation:
To solve this problem, let us first find the mass of the petrol from the given dimension.
Mass = density x volume
Volume of petrol = 4.2m³
Density of petrol = 0.3kgm⁻³
Mass of petrol = 4.2 x 0.3 = 1.26kg
So;
We can now find the volume of the alcohol
Volume of alcohol =
Mass of alcohol = 1.26kg
Density of alcohol = 0.4kgm⁻³
Volume of alcohol =
= 3.15m³
Answer:
400m
Explanation:
Brainliest? :))
Let your initial displacement from your home to the store be
Dd
>
1 and your displacement from the store to your friend’s house
be Dd
>
2.
Given: Dd
>
1 = 200 m [N]; Dd
>
2 = 600 m [S]
Required: Dd
>
T
Analysis: Dd
>
T 5 Dd
>
1 1 Dd
>
2
Solution: Figure 6 shows the given vectors, with the tip of Dd
>
1
joined to the tail of Dd
>
2. The resultant vector Dd
>
T is drawn in red,
from the tail of Dd
>
1 to the tip of Dd
>
2. The direction of Dd
>
T is [S].
Dd
>
T measures 4 cm in length in Figure 6, so using the scale of
1 cm : 100 m, the actual magnitude of Dd
>
T is 400 m.
Statement: Relative to your starting point at your home, your
total displacement is 400 m [S].
Answer: 2561.7 pounds
Explanation:
If we assume the total weight of an airplane (in pounds units) as a <u>linear function</u> of the amount of fuel in its tank (in gallons) and we make a Weight vs amount of fuel graph, which resulting slope is 5.7, we can use the slope equation of the line:
(1)
Where:
is the slope of the line
is the airplane weight with 51 gallons of fuel in its tank (assuming we chose the Y axis for the airplane weight in the graph)
is the fuel in airplane's tank for a total weigth of 2390.7 pounds (assuming we chose the X axis for the a,ount of fuel in the tank in the graph)
This means we already have one point of the graph, which coordinate is:

Rewritting (1):
(2)
As Y is a function of X:
(3)
Substituting the known values:
(4)
(5)
(6)
Now, evaluating this function when X=81 (talking about the 81 gallons of fuel in the tank):
(7)
(8) This means the weight of the plane when it has 81 gallons of fuel in its tank is 2561.7 pounds.