1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrezito [222]
3 years ago
14

What type of energy is formed when an object encounters friction?​

Physics
2 answers:
kiruha [24]3 years ago
6 0

Answer:

thermal energy

Friction does negative work and removes some of the energy the person expends and converts it to thermal energy. The net work equals the sum of the work done by each individual force. The forces acting on the package are gravity, the normal force, the force of friction, and the applied force.

Explanation:

Margaret [11]3 years ago
5 0

Answer:

Explanation:

Thermal energy due to heat coming in from rubbing like rubbing your hand and it feel warm

You might be interested in
Read the following excerpt about water availability to living organisms.
lapo4ka [179]

Answer:

1 percent

Explanation:

It says that only 3 percent of the water is fresh. So it can be 1 percent or 3 percent. But then it says that most of the water is locked up in glaciers and polar ice caps. So the animals would have a hard time getting to this water. So the rest is available for them. Approximately 1 percent is most reasonable.

5 0
3 years ago
Read 2 more answers
Kalea throws a baseball directly upward at time t = 0 at an initial speed of 13.7 m/s. How high h does the ball rise above its r
Trava [24]

Answer:

h = 9.57 seconds

Explanation:

It is given that,

Initial speed of Kalea, u = 13.7 m/s

At maximum height, v = 0

Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :

v=u-gt

u=gt

t=\dfrac{u}{g}

t=\dfrac{13.7}{9.8}

t = 1.39 s

Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

h=ut+\dfrac{1}{2}at^2

Here, a = -g

h=ut-\dfrac{1}{2}gt^2

h=13.7\times 1.39-\dfrac{1}{2}\times 9.8\times (1.39)^2

h = 9.57 meters

So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.

7 0
3 years ago
A life preserver is thrown from an helicopter straight down to a person in distress. The initial velocity of the life preserver
Leno4ka [110]

Answer:29.627 m

Explanation:

Given

Initial velocity of life preserver(u) is 1.6 m/s

it takes 2.3 s to reach the water

using equation of motion

v=u+at

v=1.6+9.81\times 2.3

v=24.163 m/s

Let s be the height of life preserver

v^2-u^2=2gs

24.163^2-1.6^2=2\times 9.81\times s

s=\frac{581.29}{2\times 9.81}

s=29.627 m

6 0
3 years ago
Suppose you observe two stars and you know they have the same luminosity. If one star is twice as far away as the other, the mor
rosijanka [135]

Answer:

The farther star will appear 4 times fainter than the star that is near to the observer.

Explanation:

Since it is given that the luminosity of the 2 stars is same thus they radiate the same energy per unit time

Consider a spherical wave front of energy 'E' that leaves both the stars (Both radiate 'E' as they have same luminosity)

This Energy is spread over the whole surface area of sphere Thus when the wave front is at a distance 'r' the energy per unit surface area is given by

e_{1}=\frac{E}{4\pi r^{2}}

For the star that is twice away from the earth the distance is '2r' thus we will receive an energy given by

e_{2}=\frac{E}{4\pi (2r)^{2}}=\frac{E}{8\pi r^{2}}=\frac{e_{1}}{4}

Hence we sense it as 4 times fainter than the nearer star.

5 0
3 years ago
A baton twirler is twirling her aluminum baton in a horizontal circle at a rate of 2.33 revolutions per second. A baton held hor
Nata [24]

Answer:

Explanation:

Given that;

horizontal circle at a rate of 2.33 revolutions per second

the magnetic field of the Earth is 0.500 gauss

the baton is 60.1 cm in length.

the magnetic field  is oriented at 14.42°

we wil get the area due to rotation of radius of baton is

\Delta A = \frac{1}{2} \Delta \theta R^2

The  formula for the induced emf is

E = \frac{\Delta  \phi}{\Delta  t}

\phi  = \texttt {magnetic flux}

E=\frac{\Delta (BA) }{\Delta  t}

=B\frac{\Delta  A}{\Delta  t}

B is the magnetic field strength

substitute

\texttt {substitute}\  \frac{1}{2} \Delta \theta R^2 \ \ for \Delta  A

E=B\frac{(\Delta  \theta R^3/2)}{\Delta  t} \\\\=\frac{1}{2} BR^2\omega

The magnetic field of the earth is oriented at 14.42

\omega =2.33\\\\L=60.1c,\\\\\theta=14.42\\\\B=0.5

we plug in the values in the equation above

so, the induce EMF will be

E=\frac{1}{2} \times (B\sin \theta)R^2\omega\\\\E=\frac{1}{2} \times (B\sin \theta)(\frac{L}{2} )\omega

=\frac{1}{2} \times0.5gauss\times\frac{0.0001T}{1gauss} \times\sin 14.42\times(\frac{60.1\times10^-^2m}{2} )^2(2.33rev/s)(\frac{2\pi rad}{1rev} )\\\\=2.5\times10^-^5\times0.2490\times0.0903\times14.63982\\\\=2.5\times10^-^5\times0.32917\\\\=8.229\times10^-^6V

6 0
3 years ago
Other questions:
  • In act 3, who says the following lines to Bottom?
    8·1 answer
  • Someone please help me!!!!!
    7·1 answer
  • How much meters is a mile
    13·1 answer
  • Is a broom an example of a wedge?
    11·1 answer
  • How long does it take a cheetah that runs with a velocity of 34m/s to run 750m?
    15·1 answer
  • Explain how heat is transferred between a hot and cold object by conduction.
    14·2 answers
  • Which diagram best represents the field around a positively charged particle?
    7·1 answer
  • A negative body image can affect your fitness because being healthy asks you to keep
    7·1 answer
  • When riding on a bus, you can tell you are moving by
    11·2 answers
  • Water pumps use electrical energy to create mechanical energy needed to move water.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!