Answer:
181.54 K
Explanation:
From gas laws, we know that v1/t1= v2/t2 where v and t represent volume and temperatures, 1 and 2 for the first and second container. Making t2 the subject of the formula then
T2=v2t1/ v1
Given information
V1 435 ml
V2 265 ml
T1 298K
Substituting the given values then
T2=265*298/435=181.54 K
If both waves have the same wavelength, then the amplitude of
their sum could be anything between 1 cm and 9 cm, depending
on the phase angle between them.
If the waves have different wavelengths, then the resultant is a beat
with an amplitude of 9 cm.
Definitely not the last 2. My bet is on the first option. If it is wrong don't hit me please...
Answer:
D
Explanation:
<em>The correct answer would be in the axle of the wheels while you ride your bicycle.</em>
Options A, B, and C requires that the forces of friction is increased in order to have more control.
However, option D requires that there is a minimal frictional force in the axle of the wheels of a bicycle while riding so that a little effort would be required to keep the bicycle moving.
<u>The lesser the friction, the lower the effort that would be needed to keep the bicycle moving and vice versa.</u>
The candle flame releases hot gases, which directly go in upwards directions. Due to which the air near the flame of the candle is very hot and dense. The particles along with vapour move up. And since the sideways, the air is not very dense and hot, we are able to hold the candle. In anti-gravity region, there will be no density differences and also, the convection process wont occur. So, the candle quickly snuffs off.