Answer:
A skater glides along a circular path. She defines a certain point on the circle as her origin. Later on, she passes through a point at which the distance she has traveled along the path from the origin is smaller than the magnitude of her displacement vector from the origin.
So here in circular motion of the skater we can see that the total path length of the skater is along the arc of the circle while we can say that displacement is defined as the shortest distance between initial and final position of the object.
So it is not possible in any circle that arc-length is less than the chord joining the two points on the circle
As we know that arc length is given as

length of chord is given as

so here


so we have

I already answered this quesiton. The fact is that there are only two kind of poles and since the two taped poles of the magnets labeled A and B attracts one to each other, we know that the two taped poles of the first two magnets are oppsosite.
Then, the taped pole of the third magnet has to be equal to one of the first two taped poles and opposite to the other of the first two taped poles.
That drives you to conclude (predict) that when she brings the taped end of the third magnet (magnet C) near each of the first two magntes, in one case they will attract each other and in the other case they will repele mutually.
Answer:
13 m/s^2
Explanation:
The acceleration of gravity near the surface of a planet is:
g = MG / R^2
For planet 1, g = 26 m/s^2.
The gravity on planet 2 in terms of the mass and radius of planet 1 is:
g = (2M)G / (2R^2)
g = 1/2 MG / R^2
Since MG/R^2 = 26 m/s^2, then:
g = 13 m/s^2
Answer:
R
Explanation:
Her distance from home and Time increase
the stops when she gets to the library
then her distance from home decreases while her time increases