Answer:
Following are the answer to this question:
Explanation:
In option (a):
- The principle of Snells informs us that as light travels from the less dense medium to a denser layer, like water to air or a thinner layer of the air to the thicker ones, it bent to usual — an abstract feature that would be on the surface of all objects. Mostly, on the contrary, glow shifts from a denser with a less dense medium. This angle between both the usual and the light conditions rays is referred to as the refractive angle.
- Throughout in scenario, the light from its stars in the upper orbit, the surface area of both the Earth tends to increase because as light flows from the outer atmosphere towards the Earth, it defined above, to a lesser angle.
In option (b):
- Rays of light, that go directly down wouldn't bend, whilst also sun source which joins the upper orbit was reflected light from either a thicker distance and flex to the usual, following roughly the direction of the curve of the earth.
- Throughout the zenith specific position earlier in this thread, astronomical bodies appear throughout the right position while those close to a horizon seem to have been brightest than any of those close to the sky, and please find the attachment of the diagram.
Answer:
No, the farmer is not able to move the mule.
Explanation:
Mass =100 kg
Force=F=800 N
The coefficient between the mule and the ground=

Static friction force,f=
Normal force=N=mg
Static friction force,f=
Using 
F<f
Static friction force is greater than applied force.
Therefore , the farmer is not able to move the mule.
Answer:
E = 2.5 x 10⁻¹⁴ J
Explanation:
given,
diameter = 1.33 x 10⁻¹⁴ m
mass = 6.64 x 10⁻²⁷ kg
wavelength is equal to diameter
de broglie wavelength equal to diameter



v = 7.5 x 10⁶ m/s
Kinetic energy is equal to


E = 2.5 x 10⁻¹⁴ J
Average speed = (total distance covered) / (time to cover the distance)
Total distance = (77km + 66km) = 143 kilometers
Time to cover the distance = 2 hours
Average speed = (143 km) / (2 hours) = 71.5 km per hour
Answer:
The answer is
A. Pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.
Explanation:
The question is incomplete, here is a complete question with full options
You are caulking a window. The caulk is rather thick and, to lay the bead correctly, the exit nozzle is small. A caulking gun uses a plunger which is operated by pulling back on a handle. You must squeeze the handle very hard to get the caulk to come out of the narrow opening because:_________.
A. pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.
B. viscous drag between the walls of the tip and the caulk causes the caulk to swirl around chaotically.
C. Newton’s third law requires most of the energy in the caulk to be used to push back on the plunger rather than moving it through the tip.
D. the high density of the caulk impedes its flow through the small opening.
Since the caulk is thick and the exit nozzle is small, the pressure needed to deliver the caulk will be very high as pressure is uniformly distributed at the plunger side at every part of the caulk, hence very high pressure is needed to deliver the caulk which is why the handle needed the very hard squeeze