60 N because 98N=mg (here g= 9.8 on earth) thus mass can be calculated which is 98/9.8 = 10kg
Now,new weight with g = 6m/s^2
=m×g' (here g' is new acceleration of the new planet)
= 10×6=60N
Answer:
The boiling point temperature of this substance when its pressure is 60 psia is 480.275 R
Explanation:
Given the data in the question;
Using the Clapeyron equation


where
is the change in enthalpy of saturated vapor to saturated liquid ( 250 Btu
T is the temperature ( 15 + 460 )R
m is the mass of water ( 0.5 Ibm )
is specific volume ( 1.5 ft³ )
we substitute
/
272.98 Ibf-ft²/R
Now,

where P₁ is the initial pressure ( 50 psia )
P₂ is the final pressure ( 60 psia )
T₁ is the initial temperature ( 15 + 460 )R
T₂ is the final temperature = ?
we substitute;


480.275 R
Therefore, boiling point temperature of this substance when its pressure is 60 psia is 480.275 R
Answer:
P = 1 x 10⁸ Pa
Explanation:
given,
radius = 2.0 ×10⁻¹⁰ m
Temperature
T = 300 K
Volume of gas molecule =


V = 33.51 x 10⁻³⁰ m³
we know,
P V = 1 . k T
k = 1.38 x 10⁻²³ J/K
P(33.51 x 10⁻³⁰) = 1 . (1.38 x 10⁻²³) x 300
P = 1.235 x 10⁸ Pa
for 1 significant figure
P = 1 x 10⁸ Pa
Answer:
The magnetic field is lowest for largest distance and highest when distance is least.
Explanation:
The magnitude of magnetic field strength at a distance 'r' from a long straight wire carrying current 'I' is given as:

Now, as per question, the distance 'r' is varied while keeping the current constant in the wire.
As seen from the above formula, the magnitude of magnetic field strength for a constant current varies inversely with the distance 'r'. This means that, as the value of 'r' increases, the magnitude of magnetic field strength decreases and vice-versa.
Therefore, the magnitude of magnetic field strength is maximum when the distance 'r' is least and the magnetic field is minimum for the largest distance.
Example:
If
are the magnitudes of magnetic field strengths for distances
respectively such that
. Now, as per the explanation above, the order of magnitudes of magnetic field strength is:
