Answer:
17.1
Explanation:
The distance ahead, of the deer when it is sighted by the park ranger, d = 20 m
The initial speed with which the ranger was driving, u = 11.4 m/s
The acceleration rate with which the ranger slows down, a = (-)3.80 m/s² (For a vehicle slowing down, the acceleration is negative)
The distance required for the ranger to come to rest, s = Required
The kinematic equation of motion that can be used to find the distance the ranger's vehicle travels before coming to rest (the distance 's'), is given as follows;
v² = u² + 2·a·s
∴ s = (v² - u²)/(2·a)
Where;
v = The final velocity = 0 m/s (the vehicle comes to rest (stops))
Plugging in the values for 'v', 'u', and 'a', gives;
s = (0² - 11.4²)/(2 × -3.8) = 17.1
The distance the required for the ranger's vehicle to com to rest, s = 17.1 (meters).
The best thing to do in order to calculate the distance of the ball taht would have traveled when it hits the ground for the fourth time is to list the height everytime it bounces. We calculate as follows:
<span>12+6+6+3+3+1.5+1.5 = 33 feet</span>
Answer:
When observed from Earth, the wavelengths of light emitted by a star are shifted toward the red end of the electromagnetic spectrum because: the star is moving away from planet Earth.
A star is a giant astronomical or celestial object that contains a luminous sphere of plasma and bounded together by its own gravitational force.
A redshift can be defined as a displacement (shift) of the spectral lines of celestial or astronomical objects toward longer wavelengths (the red end of an electromagnetic spectrum), as a result of the Doppler effect.
Hence, a redshift is considered to be a subtle change in the color of visible electromagnetic radiation from stars (starlight), as observed from planet Earth.
In conclusion, a redshift occur when observing a star from planet Earth because the star is moving away from planet Earth.
Read more: brainly.com/question/17934476
Explanation:
have a great day :)
Answer:
a) Δx = 180.59 m
b) T = 6001 N
Explanation:
a)
According to Newton's second law, which says that acceleration is directly proportional to the net force, the equation is equal to:
ΣF = m*a = T-f
Clearing a, and solving:
a = (T-f)/m = (T-f)/2*m = (12000-5800)/(2*700) = 4.43 m/s^2
To evaluate the final speed the following equation will be used:
vf^2 = vi^2 + 2*a*Δx = 0 + 2*a*Δx = 2*a*Δx
Clearing Δx:
Δx = vf^2/2*a = (40 m/s)^2/(2* 4.43 m/s^2) = 180.59 m
b)
The tension is equal to:
T = m*a + f = (700 kg * 4.43 m/s^2) + 2900 N = 6001 N