Boron: isotope data. Both isotopes ofBoron, B-10 and B-11, are used extensively in the nuclear industry. B-10 is used in the form of boric acid as a chemical shim in pressurized water reactors while in the form of sodium pentaborate it is used for standby liquid control systems in boiling water reactors
<span>6.50x10^3 calories.
Now we have 4 pieces of data and want a single result. The data is:
Mass: 100.0 g
Starting temperature: 25.0°C
Ending temperature: 31.5°C
Specific heat: 1.00 cal/(g*°C)
And we want a result with the unit "cal". Now you need to figure out what set of math operations will give you the desired result. Turns out this is quite simple. First, you need to remember that you can only add or subtract things that have the same units. You may multiply or divide data items with different units and the units can combine or cancel each other. So let's solve this:
Let's start with specific heat with the unit "cal/(g*°C)". The cal is what we want, but we'ld like to get rid of the "/(g*°C)" part. So let's multiply by the mass:
1.00 cal/(g*°C) * 100.0 g = 100.0 cal/°C
We now have a simpler unit of "cal/°C", so we're getting closer. Just need to cancel out the "/°C" part, which we can do with a multiplication. But we have 2 pieces of data using "°C". We can't multiply both of them, that would give us "cal*°C" which we don't want. But we need to use both pieces. And since we're interested in the temperature change, let's subtract them. So
31.5°C - 25.0°C = 6.5°C
So we have a 6.5°C change in temperature. Now let's multiply:
6.5°C * 100.0 cal/°C = 6500.0 cal
Since we only have 3 significant digits in our least precise piece of data, we need to round the result to 3 significant figures. 6500 only has 2 significant digits, and 6500. has 4. But we can use scientific notation to express the result as 6.50x10^3 which has the desired 3 digits of significance. So the result is 6.50x10^3 calories.
Just remember to pay attention to the units in the data you have. They will pretty much tell you exactly what to add, subtract, multiply, or divide.</span>
Answer is: more H⁺ ions than OH⁻ ions.
<span>An Arrhenius acid is a
substance that dissociates in water to form hydrogen ions or
protons.
For example, hydrochloric acid dissociate in aqueous
solution to form hydrogen ions (H</span>⁺)
and chloride anion (Cl⁻):<span>
HCl(aq) → H</span>⁺(aq) + Cl⁻<span>(aq).
</span>
An Arrhenius base is a
substance that dissociates in water to form hydroxide ions (OH⁻<span>).
For example lithium hydroxide is an Arrhenius base:</span>
LiOH(aq) → Li⁺(aq) + OH⁻(aq).
The last row going across