Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq
Answer:
"Avogadro's law is an experimental gas law relating the volume of a gas to the amount of substance of gas present. The law is a specific case of the ideal gas law. A modern statement is: Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules."
The solubility of carbon dioxide at 400 kPa at room temperature is ;
( B ) 0.61 CO2/L
<u>Given data </u>
pressure of CO₂ = 400 Kpa = 3.95 atm
Kh of CO₂ = 3.3 * 10⁻² mol/L.atm
<h3>Calculate the solubility of carbon dioxide </h3>
Solubility = pressure * Kh value of CO₂
= 3.95 atm * 3.3 * 10⁻² mol / L.atm
= 0.13 mol/l CO₂
= 0.61 CO₂ / L
Hence we can conclude that the solubility of CO₂ at 400 kPa is 0.13 mol/l CO₂.
Learn more about solubility : brainly.com/question/23946616
From the options the closest answer is ( B ) 0.61 CO₂ / L
C6H12O + 6OC2 + 6H2O + energy