Answer:
0.1 M
Explanation:
The following data were obtained from the question:
Initial volume (V1) = 100 mL
Initial concentration (C1) = 0.5 M
Final volume (V2) = 500 mL
Final concentration (C2) =?
Using the dilution formula C1V1 = C2V2, the new concentration of the solution can be obtained as follow:
C1V1 = C2V2
0.5 × 100 = C2 × 500
50 = C2 × 500
Divide both side by 500
C2 = 50/500
C2 = 0.1 M
Therefore, the new concentration of the solution is 0.1 M
Answer: the correct option is that batteries (do NOT require a continuous source of fuel).
Explanation:
A battery can be classified as an electrochemical cell that has the ability to produce electric current. They do NOT require a continuous supply of fuel because it contains all the reactants needed to produce electricity. Below are some examples of batteries that are commonly used:
--> Primary battery: This is a single use battery because it can't be recharged. A typical example is the dry cell.
--> Secondary battery: This type of battery can be recharged. They are used as a power source for smartphones, electronic tablets, and automobiles.
A FUEL CELL is known as a device that converts chemical energy into electrical energy. Fuel cells are similar to batteries but require a continuous source of fuel, often hydrogen. They will continue to produce electricity as long as they are constantly resupplied with reactants. Hydrogen fuel cells have been used to supply power for satellites, space capsules, automobiles, boats, and submarines.
Answer:
Ionic bonds form between two or more atoms by the transfer of 1 or more electrons between atoms. Electron transfer produces negative ions called anions and positive ions called cations. ... In forming an chemical bond, the sodium atom, which is electropositive, loses its negatron to chlorine.
Explanation:
The atomic number of an element never changes no matter how many neutrons they have so Sulfur would just have an atomic number of 16 like normal.
Answer : The internal energy change is -2805.8 kJ/mol
Explanation :
First we have to calculate the heat gained by the calorimeter.

where,
q = heat gained = ?
c = specific heat = 
= final temperature = 
= initial temperature = 
Now put all the given values in the above formula, we get:


Now we have to calculate the enthalpy change during the reaction.

where,
= enthalpy change = ?
q = heat gained = 23.4 kJ
n = number of moles fructose = 

Therefore, the enthalpy change during the reaction is -2805.8 kJ/mole
Now we have to calculate the internal energy change for the combustion of 1.501 g of fructose.
Formula used :

or,

where,
= change in enthalpy = 
= change in internal energy = ?
= change in moles = 0 (from the reaction)
R = gas constant = 8.314 J/mol.K
T = temperature = 
Now put all the given values in the above formula, we get:




Therefore, the internal energy change is -2805.8 kJ/mol