Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.
Answer:
The metalloids; boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), polonium (Po) and astatine (At) are the elements found along the step like line between metals and non-metals of the periodic table.
Elements: Germanium; Boron; Arsenic
Explanation:
Answer:
The binding energy released is 1.992 X 10⁻¹⁸ J
Explanation:
Given;
mass of the alpha particle, m = 6.64 x 10⁻²⁷ kg
speed of the alpha particle, c = 3 x 10⁸ m/s
The binding energy released is given by;

where;
m is mass of the particle
c is speed of the particle
E = 6.64 x 10⁻²⁷ (3 x 10⁸)²
E = 1.992 X 10⁻¹⁸ J
Therefore, the binding energy released is 1.992 X 10⁻¹⁸ J
The scientists research project with the goal of determining the sequence of chemical base pairs which make up human DNA, and of identifying and mapping<span> all of the genes of </span>the human genome<span> </span>
Answer:
it stands for Hazardous Household Products Symbols.