When an object is moving around in circles, there are two forces that keeps it in its circular orbit. These are the centripetal and the centrifugal forces. They are equal in magnitude, but they differ in the direction. The centripetal force is the force that pulls the object toward the circle's center. The centrifugal force is the force that pushed the object away from the circle's center.
Applying Newton's Second Law of Motions, any force is equal to its mass times its acceleration. For an object moving in circles, the force here is centrifugal or centripetal force, and the acceleration is the centripetal or centrifugal acceleration which is equal to
a = v²/r,
where v is the linear or tangential velocity
r is the radius of the circle
Applying this to Newton's Second Law of Motion,
F = mv²/r
Substituting the values,
F = (1,520 kg)(24 m/s)²/455 m
F = 1,924.22 N
Answer:
I would like aliens if they exist
Explanation:
Density is mass over volume: d=m/v
d = 393/50 => d = 7.86 g/ml
Answer:
A basketball sitting still in a players hands
Explanation:
The other 3 answers have the ball <u>in motion</u> (going towards the basket, bouncing, and rolling) so that would be <u>kinetic energy</u>.
When the basketball is sitting in the player's hands, it has the potential to be in motion.