<h3>Answer:</h3>
Correct Option-A (Ability to burn skin)
<h3>Explanation:</h3>
When skin tissues are exposed to Acids or Bases a chemical burn occurs as both of these substances are corrosive in nature. These burns occur without providing any heat, results from a very fast reaction, are extremely painful and causes damage to structures present under skin.
Option-B is incorrect because Acids taste sour, while, Bases taste bitter.
Option-C is incorrect because pH of Acids is less than 7 while, pH of Bases is greater than 7.
Answer:
33.33% = 33%
Explanation:
MgCO3(s) + 2HCl (aq) --> MgCl2(aq) + H20(l) + CO2(g)
1 mole of MCO3 will produce → 1 mole of CO2
We need to get the number of mole of CO2:
and when we have 0.22 g of CO2, so number of mole = mass / molar mass
Moles = 0.22 g / 44 g/mol = 0.005 mole
Moles of Mg = moles of CO2 = 0.005 mole
Mass of Mg = moles * molar mass
= 0.005 * 84 /mol = 0.42 g
Percent of MgCO3 by mass of Mg = 0.42 g / 1.26 * 100
=33.33 %
Answer:
Demo Mole Quantities
58.5g NaCl(mol/58.5g)(6.02 x 1023/mol) = 6.02 x 1023 Na
+
Cl21 pre-1982 pennies (after 1982 pennies are mostly zinc with copper coating)
63.5g Cu( mol/ 63.5g)(6.02 x 1023/mol) = 6.02 x 1023 Cu
19.0g Al (mol/27.0g)(6.02 x 1023/mol) = 4.24 x 1023 Al
Explanation:
Answer:
MgCl2 + 2AgNO3 → 2AgCl + Mg(NO3)2
Explanation:
I'm assuming you want to balance it so...
The first thing I see is that there are two chlorines on the reactant side and one on the product side
Adding a coefficient of 2 would get 2AgCl2
Now there are two silvers on the reactant side, so add a 2 to AgNO3 on the products side. Now they are all balanced.
If that is not what you are looking for let me know!
Answer:
The volume of the sample of the gas is found to be 12.90 L.
Explanation:
Given pressure of the gas = P = 1.10 atm
Number of moles of gas = n = 0.6000 mole
Temperature = T = 288.15 K
Assuming the volume of the gas to be V liters
The ideal gas equation is shown below
Volume occupied by gas = 12.90 L