Hotter it gets the more the pressure, the particles start bouncing faster when it gets hotter, therefor making the pressure higher
Answer:
6.8g of solute are needed
Explanation:
Percent by mass, (w/w%) is defined as the mass of solute in 100g of solution. A solution that is 3.4% contains 3.4g of solute in 100g of solution. That means to make 200g of solution are required:
200g solution * (3.4g solute / 100g solution) = 6.8g of solute are needed
Answer:
Explanation:
<u>1) Data:</u>
Base: NaOH
Vb = 15.00 ml = 15.00 / 1,000 liter
Mb = ?
Acid: H₂SO₄
Va = 17.88 ml = 17.88 / 1,000 liter
Ma = 0.1053
<u>2) Chemical reaction:</u>
The <em>titration</em> is an acid-base (neutralization) reaction to yield a salt and water:
- Acid + Base → Salt + Water
- H₂SO₄ (aq) + NaOH(aq) → Na₂SO₄ (aq) + H₂O (l)
<u>3) Balanced chemical equation:</u>
- H₂SO₄ (aq) + 2 NaOH(aq) → Na₂SO₄ (aq) + 2H₂O (l)
Placing coefficient 2 in front of NaOH and H₂O balances the equation
<u>4) Stoichiometric mole ratio:</u>
The coefficients of the balanced chemical equation show that 1 mole of H₂SO₄ react with 2 moles of NaOH. Hence, the mole ratio is:
- 1 mole H₂SO₄ : 2 mole NaOH
<u>5) Calculations:</u>
a) Molarity formula: M = n / V (in liter)
⇒ n = M × V
b) Nunber of moles of acid:
- nₐ = Ma × Va = 0.1053 (17.88 / 1,000)
c) Number of moles of base, nb:
- nb = Mb × Vb = Mb × (15.00 / 1,000)
d) At equivalence point number of moles of acid = number of moles of base
- 0.1053 × (17.88 / 1,000) = Mb × (15.00 / 1,000)
- Mb = 0.1053 × 17.88 / 15.00 = 0.1255 mole/liter = 0.1255 M
The Molar mass of an atom corresponds directly with its atomic mass on the periodic table.
One half-life: 5 grams
Two half-lives: 2.5 grams