2 or more simple machines I hope this help :)
First we find for the wavelength of the photon released due
to change in energy level. We use the Rydberg equation:
1/ʎ = R [1/n1^2 – 1/n2^2]
where,
ʎ is the wavelength
R is the rydbergs constant = 1.097×10^7 m^-1
n1 is the 1st energy level = 1
n2 is the higher energy level = infinity, so 1/n2 = 0
Calculating for ʎ:
1/ʎ = 1.097×10^7 m^-1 * [1/1^2 – 0]
ʎ = 9.1158 x 10^-8 m
Then calculate the energy using Plancks equation:
E = hc/ʎ
where,
h is plancks constant = 6.626×10^−34 J s
c is speed of light = 3x10^8 m/s
E = (6.626×10^−34 J s * 3x10^8 m/s) / 9.1158 x 10^-8 m
E = 2.18 x 10^-18 J = 2.18 x 10^-21 kJ
This is still per atom, so multiply by Avogadros number =
6.022 x 10^23 atoms / mol:
E = (2.18 x 10^-21 kJ / atom) * (6.022 x 10^23 atoms /
mol)
E = 1312 kJ/mol
The complete balanced chemical equation for photosynthesis in plants is:
6CO₂ + 6H₂O ----> C₆H₁₂O₆ + 6O₂
Based on the balanced equation the molar ratio between H₂O and C₆H₁₂O₆ is 6:1
This means that 6 moles of H₂O is need for every 1 mole of C₆H₁₂O₆
9.31 mol of C₆H₁₂O₆ x (6 moles of H₂O / 1 mole of C₆H₁₂O₆) = 55.86 moles of H₂O
Thus the moles of H₂O need is 55.86
.
4.42
Because when you divide 129/29.20, you get a long string of numbers. 4.417808219178082...
So you round to the significant figure which in this case is 2 decimal places because 29.20 has 2 decimal places.
PS did you draw that car? Cuz im into drawing cars too.
Answer:
The electrons that whiz about outside the nucleus have a negative charge. They are held in the atom by the positive charge of the nucleus. ... An atom that gains or loses an electron becomes an ion. If it gains a negative electron, it becomes a negative ion.
Explanation:
Hope this helped!...