D) they become dimmer at regular intervals.
Gamma raidiation and beta and alpha particles
Answer:
15.76N
Explanation:
horizontal component =Fcos¢ = 20cos38 = 15.76N
Answer:
Watt
Explanation:
Power is measured in Watts. J/s is the base unit of measurement, but we usually measure power in Watts (W).
Answer:
The height is ![h_c = 42.857](https://tex.z-dn.net/?f=h_c%20%3D%2042.857)
A circular hoop of different diameter cannot be released from a height 30cm and match the sphere speed because from the conservation relation the speed of the hoop is independent of the radius (Hence also the diameter )
Explanation:
From the question we are told that
The height is ![h_s = 30 \ cm](https://tex.z-dn.net/?f=h_s%20%3D%2030%20%5C%20cm)
The angle of the slope is ![\theta = 15^o](https://tex.z-dn.net/?f=%5Ctheta%20%3D%2015%5Eo)
According to the law of conservation of energy
The potential energy of the sphere at the top of the slope = Rotational kinetic energy + the linear kinetic energy
![mgh = \frac{1}{2} I w^2 + \frac{1}{2}mv^2](https://tex.z-dn.net/?f=mgh%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20I%20w%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
Where I is the moment of inertia which is mathematically represented as this for a sphere
![I = \frac{2}{5} mr^2](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7B2%7D%7B5%7D%20mr%5E2)
The angular velocity
is mathematically represented as
![w = \frac{v}{r}](https://tex.z-dn.net/?f=w%20%3D%20%5Cfrac%7Bv%7D%7Br%7D)
So the equation for conservation of energy becomes
![mgh_s = \frac{1}{2} [\frac{2}{5} mr^2 ][\frac{v}{r} ]^2 + \frac{1}{2}mv^2](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5B%5Cfrac%7B2%7D%7B5%7D%20mr%5E2%20%5D%5B%5Cfrac%7Bv%7D%7Br%7D%20%5D%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
![mgh_s = \frac{1}{2} mv^2 [\frac{2}{5} +1 ]](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%5B%5Cfrac%7B2%7D%7B5%7D%20%2B1%20%5D)
![mgh_s = \frac{1}{2} mv^2 [\frac{7}{5} ]](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%5B%5Cfrac%7B7%7D%7B5%7D%20%5D)
![gh_s =[\frac{7}{10} ] v^2](https://tex.z-dn.net/?f=gh_s%20%3D%5B%5Cfrac%7B7%7D%7B10%7D%20%5D%20v%5E2)
![v^2 = \frac{10gh_s}{7}](https://tex.z-dn.net/?f=v%5E2%20%3D%20%5Cfrac%7B10gh_s%7D%7B7%7D)
Considering a circular hoop
The moment of inertial is different for circle and it is mathematically represented as
![I = mr^2](https://tex.z-dn.net/?f=I%20%3D%20mr%5E2)
Substituting this into the conservation equation above
![mgh_c = \frac{1}{2} (mr^2)[\frac{v}{r} ] ^2 + \frac{1}{2} mv^2](https://tex.z-dn.net/?f=mgh_c%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%28mr%5E2%29%5B%5Cfrac%7Bv%7D%7Br%7D%20%5D%20%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2)
Where
is the height where the circular hoop would be released to equal the speed of the sphere at the bottom
![mgh_c = mv^2](https://tex.z-dn.net/?f=mgh_c%20%20%3D%20mv%5E2)
![gh_c = v^2](https://tex.z-dn.net/?f=gh_c%20%3D%20v%5E2)
![h_c = \frac{v^2}{g}](https://tex.z-dn.net/?f=h_c%20%3D%20%5Cfrac%7Bv%5E2%7D%7Bg%7D)
Recall that ![v^2 = \frac{10gh_s}{7}](https://tex.z-dn.net/?f=v%5E2%20%3D%20%5Cfrac%7B10gh_s%7D%7B7%7D)
![h_c= \frac{\frac{10gh_s}{7} }{g}](https://tex.z-dn.net/?f=h_c%3D%20%5Cfrac%7B%5Cfrac%7B10gh_s%7D%7B7%7D%20%7D%7Bg%7D)
![= \frac{10h_s}{7}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B10h_s%7D%7B7%7D)
Substituting values
![h_c = \frac{10(30)}{7}](https://tex.z-dn.net/?f=h_c%20%3D%20%5Cfrac%7B10%2830%29%7D%7B7%7D)