Answer:
The length is 
Explanation:
From the question we are told that
The frequencies of the two successive harmonics are
, 
The speed of sound in the air is 
Generally the frequency of a given harmonic is mathematically represented as

Here n defines the position of the harmonics
Now since the position of both harmonic is not know but we know that they successive then we can represented them mathematically as

and

So

=> 
=> 
Answer:
to make calculation more easy to get
Explanation:
if you are using chart or calculate Thermodynamic problems you will not never solve this problem with out using data table for thermodynamic
Answer:
(a) 10 m/s
(b) 22.4 m/s
Explanation:
(a) Draw a free body diagram of the car when it is at the top of the loop. There are two forces: weight force mg pulling down, and normal force N pushing down.
Sum of forces in the centripetal direction (towards the center):
∑F = ma
mg + N = mv²/r
At minimum speed, the normal force is 0.
mg = mv²/r
g = v²/r
v = √(gr)
v = √(10 m/s² × 10.0 m)
v = 10 m/s
(b) Energy is conserved.
Initial kinetic energy + initial potential energy = final kinetic energy
½ mv₀² + mgh = ½ mv²
v₀² + 2gh = v²
(10 m/s)² + 2 (10 m/s²) (20.0 m) = v²
v = 22.4 m/s
Answer:
The image will most likely be 20cm in front the mirror since the mirror was placed further 5cm.