Answer:
Attached is the complete question but the weight of the mailbox and cross bar differs from the given values which are : weight of mail box = 3.2 Ib, weight of the uniform cross member = 10.3 Ib
Answer : moment of inertia = 186.7 Ib - in
Explanation:
Given data
weight of the mailbox = 3.2 Ib
weight of the uniform cross member = 10.3 Ib
The origin is of mailbox and cross member is 0
The perpendicular distance from Y axis of centroid of the mailbox
= 4 + (25/2) = 16.5"
The centroid of the bar =( ( 1 + 25 + 4 + 4 ) / 2 ) - 4 = 13"
therefore The moment of Inertia( Mo) = (3.2 * 16.5) + ( 10.3 * 13)
= 52.8 + 133.9 = 186.7 Ib-in
Answer:
The energy, that is dissipated in the resistor during this time interval is 153.6 mJ
Explanation:
Given;
number of turns, N = 179
radius of the circular coil, r = 3.95 cm = 0.0395 m
resistance, R = 10.1 Ω
time, t = 0.163 s
magnetic field strength, B = 0.573 T
Induced emf is given as;
where;
ΔФ is change in magnetic flux
ΔФ = BA = B x πr²
ΔФ = 0.573 x π(0.0395)² = 0.002809 T.m²
According to ohm's law;
V = IR
I = V / R
I = 3.0848 / 10.1
I = 0.3054 A
Energy = I²Rt
Energy = (0.3054)² x 10.1 x 0.163
Energy = 0.1536 J
Energy = 153.6 mJ
Therefore, the energy, that is dissipated in the resistor during this time interval is 153.6 mJ
Answer:
Technician A
Explanation:
Ohms law: I= E/R so rest resistance must be present along with E/potential difference. Even if just wire shorted together there is resistance but very little.
Tech B: Again ohms law. Current flow is directly proportional to the voltage and inversely proportional to R (resistance or impedance).
Answer:
Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:
Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:
Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is ".
If we analyze the staritning point we see that the initial velocity can be founded like this:
And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:
And if we integrate the left part and we simplify the right part we have
And if we solve for we got:
Answer:
D
Explanation:
Confidential data is not supposed to be shared amongst others.