1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
3 years ago
7

An asbestos pad is square in cross section, measuring 5 cm on a side at its small end increasing linearly to 10 cm on a side at

the large end. The pad is 15 cm high. If the small end is held at 600 K and the large end at 300 K, what heat-ow rate will be obtained if the four sides are insulated? Assume onedimensional heat conduction. The thermal conductivity of asbestos may be taken as 0:173W/mK:

Engineering
1 answer:
polet [3.4K]3 years ago
5 0

Answer:

q = 1.73 W

Explanation:

given data

small end  = 5 cm

large end = 10 cm

high = 15 cm

small end is held = 600 K

large end at = 300 K

thermal conductivity of asbestos  = 0.173 W/mK

solution

first we will get here side of cross section that is express as

S = S1 + \frac{S2-S1}{L} x     ...............1

here x is distance from small end and S1 is side of square at small end

and S2 is side of square of large end and L is length

put here value and we get

S = 5 + \frac{10-5}{15} x

S = \frac{0.15 + x}{3}    m

and  

now we get here Area of section at distance x is

area A = S²    ...............2

area A = (\frac{0.15 + x}{3})^2    m²

and

now we take here small length dx and temperature difference is dt

so as per fourier law

heat conduction is express as

heat conduction q = \frac{-k\times A\  dt}{dx}      ...............3

put here value and we get

heat conduction q = -k\times (\frac{0.15 + x}{3})^2 \   \frac{dt}{dx}  

it will be express as

q \times \frac{dx}{(\frac{0.15 + x}{3})^2} = -k (dt)  

now we intergrate it with limit 0 to 0.15 and take temp 600 to 300 K

q \int\limits^{0.15}_0 {\frac{dx}{(\frac{0.15 + x}{3})^2 } = -0.173 \int\limits^{300}_{600} {dt}          

solve it and we get

q (30)  = (0.173) × (600 - 300)

q = 1.73 W

You might be interested in
Which of the following is critical when performing maintenance?
nikitadnepr [17]
I think the answer is C
7 0
2 years ago
Basic output with variables (Java) This zyLab activity is intended for students to prepare for a larger programming assignment.
9966 [12]

Answer:

1

Explanation:

3 0
3 years ago
You can assume there is no pressure drop between the exit of the compressor and the entrance of the turbine. All the power from
Eddi Din [679]

Answer:

s6rt5x11j4fgu

j4

cf53yhu5

y4

hh

Explanation:

j

6 0
3 years ago
Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1
steposvetlana [31]

Answer:

The velocity at section is approximately 42.2 m/s

Explanation:

For the water flowing through the pipe, we have;

The pressure at section (1), P₁ = 300 kPa

The pressure at section (2), P₂ = 100 kPa

The diameter at section (1), D₁ = 0.1 m

The height of section (1) above section (2), D₂ = 50 m

The velocity at section (1), v₁ = 20 m/s

Let 'v₂' represent the velocity at section (2)

According to Bernoulli's equation, we have;

z_1 + \dfrac{P_1}{\rho \cdot g} + \dfrac{v^2_1}{2 \cdot g} = z_2 + \dfrac{P_2}{\rho \cdot g} + \dfrac{v^2_2}{2 \cdot g}

Where;

ρ = The density of water = 997 kg/m³

g = The acceleration due to gravity = 9.8 m/s²

z₁ = 50 m

z₂ = The reference = 0 m

By plugging in the values, we have;

50 \, m + \dfrac{300 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{(20 \, m/s)^2}{2 \times 9.8 \, m/s^2} = \dfrac{100 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}50 m + 30.704358 m + 20.4081633 m = 10.234786 m + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

50 m + 30.704358 m + 20.4081633 m - 10.234786 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

90.8777353 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

v₂² = 2 × 9.8 m/s² × 90.8777353 m

v₂² = 1,781.20361 m²/s²

v₂ = √(1,781.20361 m²/s²) ≈ 42.204308 m/s

The velocity at section (2), v₂ ≈ 42.2 m/s

3 0
2 years ago
HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
trasher [3.6K]

Answer:

The publication of a parody for commercial gain does not fall within the protection afforded by Section 107, as it is used for commercial gain.

Explanation:

<h2><u><em>PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
4 0
2 years ago
Other questions:
  • Practicing new things strains your brain fibers, weakening your ability to make connections.
    13·1 answer
  • What is pneumatic troubleshooting
    6·1 answer
  • A three-phase transformer bank consists of 3 single-phase transformers to handle 400 kVA witha 34.5kV/13.8kV voltage ratio. Find
    7·1 answer
  • Refrigerant 134a enters a horizontal pipe operating at steady state at 40oC, 300 kPaand a velocity of 40 m/s. At the exit, the t
    13·1 answer
  • What structure was created to help prevent shipwrecks?
    9·1 answer
  • Please choose a specific type of stability or control surface (e.g., a canard) and explain how it is used, what it is used for,
    5·1 answer
  • Which is an alloy made up of iron and carbon and has high compressive and tensile strength?
    6·1 answer
  • An apple, potato, and onion all taste the same if you eat them with your nose plugged
    8·2 answers
  • A tool used to put a concave edge on a plane iron is
    6·1 answer
  • How does energy transition from one form to another as water moves from behind a dam to downstream of a dam?.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!