Answer:
The velocity at R/2 (midway between the wall surface and the centerline) is given by (3/4)(Vmax) provided that Vmax is the maximum velocity in the tube.
Explanation:
Starting from the shell momentum balance equation, it can be proved that the velocity profile for fully developedblaminar low in a circular pipe of internal radius R and a radial axis starting from the centre of the pipe at r=0 to r=R is given as
v = (ΔPR²/4μL) [1 - (r²/R²)]
where v = fluid velocity at any point in the radial direction
ΔP = Pressure drop across the pipe
μ = fluid viscosity
L = pipe length
But the maximum velocity of the fluid occurs at the middle of the pipe when r=0
Hence, maximum veloxity is
v(max) = (ΔPR²/4μL)
So, velocity at any point in the radial direction is
v = v(max) [1 - (r²/R²)]
At the point r = (R/2)
r² = (R²/4)
(r²/R²) = r² ÷ R² = (R²/4) ÷ (R²) = (1/4)
So,
1 - (r²/R²) = 1 - (1/4) = (3/4)
Hence, v at r = (R/2) is given as
v = v(max) × (3/4)
Hope this Helps!!!
Answer:The distinction between a permanent magnet and an electromagnet is essentially one in how the field is created, not the properties of the field afterwards. So electromagnets still have two poles, still attract ferromagnetic materials, and still have poles that repel other like poles and attract unlike poles.
Explanation:
Answer:
Speed=1.633 m/s
Force= 20 N
Explanation:
Ideally,
hence
where v is the speed of collar, m is the mass of collar, k is spring constant and s is the displacement.
In this case, s=100-0=100mm=0.1m since 1 m is equivalent to 1000mm
k is given as 200 N/m and mass is 0.75 Kg
Substituting the given values

Therefore, <u>the speed is 1.633 m/s</u>
The sum of vertical forces is given by mg where g is acceleration due to gravity and it's value taken as 
Therefore, 
The sum of forces in normal direction is given by
therefore

Therefore, <u>normal force on the rod is 20 N</u>