Answer:
overflow rate 20.53 m^3/d/m^2
Detention time 2.34 hr
weir loading 114.06 m^3/d/m
Explanation:
calculation for single clarifier



volume of tank



overflow rate =
Detention time
weir loading
Answer:
Plans; blueprints.
Explanation:
In Engineering, it is a common and standard practice to use drawings and models in the design and development of various tools or systems that are being used for proffering solutions to specific problems in different fields such as engineering, medicine, telecommunications and industries.
Hence, a design engineer make use of drawings such as pictorial drawings, sketches, or technical drawing to communicate ideas about a design to others, to record and retain informations (ideas) so that they're not forgotten and to analyze how different components of a design work together.
Technical drawing is mainly implemented with CAD (computer-aided design) software and is typically used in plans and blueprints that show how to construct an object.
Additionally, technical drawings show in detail how the pieces of something (object) relate to each other, as well as accurately illustrating the actual (true) shape and size of an object in the design and development process.
Answer:
A safety margin is the space left between your vehicle and the next to provide room, time and visibility at every instant
Explanation:
A safety margin is defined as an allowance given between your vehicle and the next vehicle in front to provide enough room, visibility and time to move in a safe manner to prevent the occurrence of an accident at anytime the frontal vehicle suddenly stops or slows down
Safety margins help minimize risks in the following way
1) A common knowledge of safety margins, improves predictability among road users, thereby minimizing the risk traffic accidents caused due to late communication
2) The use of safety margins helps minimize the risk due to a change in driving conditions such as when the road becomes more slippery from being covered with fluid that is being wetted
3) Safety margin can help prevent the occurrence of an accident between vehicles due to failure of a car system, such as a punctured tire or failed breaking system
4) Safety margin helps to protect road users from the introduction of obstacles on the main roads such as ongoing road construction, broken down vehicles, road blockage by vehicles involved in an accident etc
5) Safety margin help protect road users from being involved in an accident due to the loss of driving focus of the driver of the frontal vehicle
Answer:
Depends
Explanation:
The modem connects you to the Internet via ISP. Without a modem, your router will only allow you to connect to a LAN. A modem will provide connections for just a single wired device. If you want to go wireless you need a router.
Mark brainliest please!
Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.
Compressors
Compressors are used to move gases and vapors in situations where large pressure differences are necessary.
Types of Compressor
Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.
Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.
The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.
When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.
Dynamic Compressors
Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.
Compressor Work
To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:
Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.
Adiabatic, Isentropic Compression
If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:
Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression
If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:
http://facstaff.cbu.edu/rprice/lectures/compress.html