1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
6

A wave of wavelength 0.3 m travels 900 m in 3.0 s. Calculate its frequency.

Physics
1 answer:
Crank3 years ago
8 0

Answer: 1000 Hz

Explanation:

You can calculate frequency by dividing velocity by wavelength

Frequency = velocity/wavelength

Find velocity first.

900 m/3 s = 300 m/s

Plug values in to find frequency.

F = (300 m/s)/0.3 m

F = 1000 Hz

You might be interested in
An electron and a proton are each placed at rest in an electric field of 500 N/C. Calculate the speed (and indicate the directio
Bumek [7]

Answer:

For proton: 2592 m/s In the same direction of electric field.

For electron: 4752000 m/s In the opposite direction of electric field.

Explanation:

E = 500 N/C, t = 54 ns = 54 x 10^-9 s,

Acceleration = Force /mass

Acceleration of proton, ap = q E / mp

ap = (1.6 x 10^-19 x 500) / (1.67 x 10^-27) = 4.8 x 10^10 m/s^2

Acceleration of electron, ae = q E / me

ae = (1.6 x 10^-19 x 500) / (9.1 x 10^-31) = 8.8 x 10^13 m/s^2

For proton:

u = 0, ap = 4.8 x 10^10 m/s^2, t = 54 x 10^-9 s

use first equation of motion

v = u + at

vp = 0 + 4.8 x 10^10 x 54 x 10^-9 = 2592 m/s In the same direction of electric field.

For electron:

u = 0, ae = 8.8 x 10^13 m/s^2, t = 54 x 10^-9 s

use first equation of motion

v = u + at

vp = 0 + 8.8 x 10^13 x 54 x 10^-9 = 4752000 m/s In the opposite direction of electric field.

6 0
4 years ago
What two variables are multiplied together to calculate mass?
Aleksandr [31]

Volume x Density = Mass

or

Weight / Gravity = Mass

8 0
4 years ago
A girl drops a stone from the top a tower 45m tall. At the same time, a boy standing at the base of the tower, projects another
Advocard [28]

Answer:

(i) The stones meet at 1.8 second

(ii) The point at which the stones meet, is 28.8 m above the base of the building and 16.2 m below the top of the building.

Explanation:

(i)

First we consider the stone dropped by the girl. We have data:

Vi = Initial Velocity of Stone = 0 m/s   (Since the stone was initially at rest)

t = Time Period

g = 10 m/s²

s₁ = Distance Covered by Stone

Using 2nd equation of motion, we get:

s₁ = Vi t + (0.5)gt²

s₁ = (0)(t) + (0.5)(10)t²

s₁ = 5t²   ----- equation (1)

Now, we consider the stone throne vertically upward by the boy. We have data:

Vi = Initial Velocity of Stone = 25 m/s

t = Time Period

g = - 10 m/s²   (negative sign due to upward motion)

s₂ = Distance Covered by Stone

Using 2nd equation of motion, we get:

s₂ = Vi t + (0.5)gt²

s₂ = (25)(t) + (0.5)(-10)t²

s₂ = 25t - 5t²   ----- equation (2)

At, the point where both the stones meet, the sum of distances covered by both stones must be equal to the height of building (i.e 45 m).

s₁ + s₂ = 45

using values from equation (1) and equation (2)

5t² + 25t - 5t² = 45

25t = 45

t = 45/25

<u>t =  1.8 sec</u>

(ii)

using this value of of t in equation (2)

s₂ = (25)(1.8) - (5)(1.8)²

<u>s₂ = 28.8 m</u>

using this value of of t in equation (1)

s₁ = (5)(1.8)²

<u>s₁ = 16.2 m</u>

<u>Hence, the point at which the stones meet, is 28.8 m above the base of the building and 16.2 m below the top of the building.</u>

6 0
3 years ago
A 7.8 µF capacitor is charged by a 9.00 V battery through a resistance R. The capacitor reaches a potential difference of 4.20 V
Vaselesa [24]

Answer:

655128 ohm

Explanation:

C = Capacitance of the capacitor = 7.8 x 10⁻⁶ F  

V₀ = Voltage of the battery = 9 Volts  

V = Potential difference across the battery after time "t" = 4.20 Volts  

t = time interval = 3.21 sec  

T = Time constant

R = resistance  

Potential difference across the battery after time "t" is given as  

V = V_{o} (1-e^{\frac{-t}{T}})

4.20 = 9 (1-e^{\frac{-3.21}{T}})

T = 5.11 sec  

Time constant is given as  

T = RC  

5.11 = (7.8 x 10⁻⁶) R  

R = 655128 ohm

3 0
3 years ago
he work function of a certain metal is 1.90 eV. What is the longest wavelength of light that can cause photoelectron emission fr
bixtya [17]

Answer:

6538.8 Angstrom

Explanation:

work function, w = 1.9 eV = 1.9 x 1.6 x 10^-19 J = 3.04 x 10^-19 J

Let the longest wavelength is λ.

W = h c / λ

λ = h c / W

λ = (6.626 x 10^-34 x 3 x 10^8) / (3.04 x 10^-19)

λ = 6.5388 x 10^-7 m = 6538.8 Angstrom

Thus, the longest wavelength is 6538.8 Angstrom.

3 0
3 years ago
Other questions:
  • describe the coordinate system that is usually chosen for analyzing circular motion and state at least one advantages for this c
    7·1 answer
  • Which four equations can be used to solve for acceleration
    7·1 answer
  • A mass M is attached to an ideal massless spring. When this system is set in motion with amplitude A, it has a period T. What is
    7·1 answer
  • magine that two balls, a basketball and a much larger exercise ball, are dropped from a parking garage. If both the mass and rad
    7·1 answer
  • As the car falls off the cliff, what is happening to the kinetic energy of the falling car?
    12·1 answer
  • What do you do for fun hobbies?​
    10·2 answers
  • The space shuttle slows down from 1200 km/hr to 400 km/hr over 10 seconds. What is the space shuttles deceleration?
    11·1 answer
  • Anyone know this... pls help its for a grade​
    14·1 answer
  • A 5kg object is moving downward at a speed of 12m/s. If it is currently 2.6m above the ground, what is its potential energy? Use
    9·1 answer
  • Seeds are often found on which part of a gymnosperm?<br><br> branch<br> leaf<br> cone<br> stem
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!