The given question is incomplete. The complete question is:
Suppose a current of 0.920 A is passed through an electroplating cell with an aqueous solution of agno3 in the cathode compartment for 47.0 seconds. Calculate the mass of pure silver deposited on a metal object made into the cathode of the cell.
Answer: 0.0484 g
Explanation:
where Q= quantity of electricity in coloumbs
I = current in amperes = 0.920 A
t= time in seconds = 47.0 sec
96500 Coloumb of electricity electrolyzes 1 mole of Ag
43.24 C of electricity deposits = of Ag
Thus the mass of pure silver deposited on a metal object made into the cathode of the cell is 0.0484 g
Answer:
<h2>Density = 0.00026 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>
</h3>
From the question
mass of air = 1.2 g
volume = 4,555 mL
Substitute the values into the above formula and solve for the density
That's
<h3>
</h3>
= 0.0002634
We have the final answer as
<h3>Density = 0.00026 g/mL</h3>
Hope this helps you
The theoretical yield is 204.4 g while the percent yield is 2.57%.
<h3>What is theoretical yield?</h3>
Theoretical yield is the amount of product obtained based on the stoichiometry of the reaction.
S8(s) + 8 Na2SO3(aq) + 40 H2O(l) --->8 Na2S2O3·5 H2O(s)
Number of moles of sulfur = 3.25 g /8(32) = 0.013 moles
Number of moles of sodium sulfite = 13.1 g/126 g/mol = 0.103 moles
Since 1 moles of sulfur reacts with 8 moles of sodium sulfite
0.013 moles reacts with 0.013 moles × 8 moles /1 mole = 0.104 moles
There is not enough sodium sulfite hence it is the limiting reactant.
1 mole of sodium sulfite yields 8 moles of product
0.103 moles of sodium sulfite yields 0.103 moles × 8 moles /1 mole = 0.824 moles
Mass of product = 0.824 moles × 248 g/mol = 204.4 g
percent yield = 5.26 g /204.4 g × 100/1
= 2.57%
Learn more about percent yield: brainly.com/question/2506978
Answer:9.49g/mL
Explanation:
Mass of toy = 43.672g
Volume of water = 34.4mL
Volume of toy + volume of water = 39mL
Volume of toy = 39 — 34.4 = 4.6mL
Density = Mass /volume
Density = 43.672/4.6 = 9.49g/mL