Explanation:
To determine the charge on a given transition metal atom, you have to consider what element it is, the charges on the other atoms in the molecule, and the net charge on the molecule itself. The charges are always whole numbers, and the sum of all the atomic charges equals the charge on the molecule
I think the correct answer is the first option. It has nonpolar bonds and a symmetrical structure. The structure of a BF3 molecule shows a symmetrical trigonal geometry. The net dipole moment of the molecule is zero therefore it is polar.
Answer:
18.65004 grams H2O
Explanation:
First, we need to write down the balanced chemical equation for the decomposition reaction:
2LiOH -> H2O + Li2O
Since we have grams of LiOH and we need to know the grams of water, we need to convert to moles since we can only compare moles to moles.
The amu of LiOH is 23.947.
The given grams of LiOH is 63.. To convert to moles, we will divide 63 by 23.947..
This gives us 2.6310 moles LiOH..
To convert to moles of H2O (and later grams of H2O), we will use the mole fractions from the balanced equation...
When we look at the balanced equation we can see that 2 moles of LIOH can produce 1 mol of Water, so:
2.6310 moles
= 1.3155 moles H2O
Now we will convert from moles to grams (we must multiply by the amu)
1.3155 moles H2O = 18.65 grams H2O
In this solution the solvent is water and the solutes are sugar, artificial flavor and artificial color. Another interesting property of solutions is that different concentrations of solute can be made. As all of you are aware, you can make very sweet Kool Aid and less sweet Kool Aid.