The new volume of the gas that has an initial pressure of 5.6 x 10⁵ Pa is 5.7L. Details about volume of the gas can be found below.
<h3>How to calculate volume?</h3>
The volume of a gas can be calculated using the Boyle's law equation as follows:
P1V1 = P2V2
Where;
- P1 = initial pressure
- P2 = final pressure
- V1 = initial volume
- V2 = final volume
1.53 × 5.6 × 10⁵ = 1.5 × 10⁵ × V2
8.568 × 10⁵ = 1.5 × 10⁵V2
V2 = 8.57 × 10⁵ ÷ 1.5 × 10⁵
V2 = 5.7L
Therefore, the new volume of the gas that has an initial pressure of 5.6 x 10⁵ Pa is 5.7L.
Learn more about volume at: brainly.com/question/12357202
#SPJ1
Answer: There are atoms present in 0.500 mol of .
Explanation:
According to the mole concept, there are atoms present in 1 mole of a substance.
In a molecule of there is only one carbon atom present. Therefore, number of carbon atoms present in 0.500 mol of are as follows.
Thus, we can conclude that there are atoms present in 0.500 mol of .
Answer:
Why do most atoms form chemical bonds? They want a full outer shell of electrons, so the lose, gain, or share electrons with other elements, forming compounds, until they have 8 valence electrons and become stable. Double and triple covalent bonds that have greater bond energy and are shorter than single bonds.
Explanation: HOPE THIS HELPS YOU..
Answer:
C.Melt both cubes and look for a broader range of melting temperatures. The one that melts over a broader range of temperatures is the amorphous solid.
Explanation:
Amorphous solids is one that do not have a fixed melting points but melt over a wide range of temperature due to the irregular shape hence its name. Contrariwise crystalline solids, have a fixed and sharp melting point.
This comes in handy to solve the riddle. We can characterise the pair with the melting point property.
Answer:
The heat released by the combustion is 20,47 kJ
Explanation:
Bomb calorimeter is an instrument used to measure the heat of a reaction. The formula is:
Q = C×m×ΔT + Cc×ΔT
Where:
Q is the heat released
C is specific heat of water (4,186kJ/kg°C)
m is mass of water (1,00kg)
ΔT is temperature change (23,65°C - 20,45°C)
And Cc is heat capacity of the calorimeter (2,21kJ/°C)
Replacing these values the heat released by the combustion is:
<em>Q = 20,47 kJ</em>