S = ut + 0.5at^2
<span>10 = 0 + 0.5(9.81)t^2 {and if g = 10 then t^2 = 2 so t ~1.414} </span>
<span>t^2 ~ 2.04 </span>
<span>t ~ 1.43 seconds</span>
Answer: The work is 1863 N*m
Explanation:
We can define work as:
W = F*d
Where F is the force that the mover needs to apply to the refrigerator, and d is the distance that the refrigerator is moved.
To move the refrigerator, the minimal force that the mover needs to do is exactly the friction force (In this case, the refrigerator will move with constant speed).
Then we will have:
F = 230 N
and the distance is 8.1 meters, then the work will be:
W = 230N*8.1 m = 1863 N*m
Answer:
The answers are options B,D and E
Explanation:
B) The particles in the liquid are slowly overcoming the forces of attraction and spreading out due to the thermal energy they are absorbing. This makes the liquid less dense as it slowly changes into a gas after reaching its boiling point.
D) The particles start absorbing the energy form the surroundings as latent heat of evaporation. They need this energy to overcome the strong forces of attraction between particles to change into the gaseous state
E) The particles have spaced out due to the thermal energy absorbed, making the liquid lighter and it rises upwards.
Answer:
15.13 m/s
Explanation:
The wave speed of the stretched rope can be calculated using the following formula
where is the tension on the rope and is the density of the rope per unit length