Answer:
100 Degrees is boiling point.
Explanation:
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
A fundamental force , is your answer .
Answer:
6.00 x 10⁻⁸N
Explanation:
Given parameters:
Mass of each dump trucks = 1500kg
Distance between them = 50m
Unknown:
New gravitational force between them = ?
Solution:
From Newton's law of universal gravitation,
F =
F is the gravitational force
G is the universal gravitation constant
m is the mass
r is the distance
F =
= 6.00 x 10⁻⁸N