Answer:
c. remains the same, but the RPMs decrease.
Explanation:
Because there aren't external torques on the system composed by the person and the turntable it follows that total angular momentum (I) is conserved, that means the total angular momentum is a constant:

The total angular momentum is the sum of the individual angular momenta, in our case we should sum the angular momentum of the turntable and the angular momentum of a point mass respect the center of the turntable (the person)
(1)
The angular momentum of the turntable is:
(2)
with I the moment of inertia and ω the angular velocity.
The angular momentum of the person respects the center of the turntable is:
(3)
with r the position of the person respects the center of the turntable, m the mass of the person and v the linear velocity
Using the fact
:
(3)
By (3) and (2) on (1) and working only the magnitudes (it's all that we need for this problem):


Because the equality should be maintained, if we increase the distance between the person and the center of the turntable (r), the angular velocity should decrease to maintain the same constant value because I and m are constants, so the RPM's (unit of angular velocity) are going to decrease.
Answer:
x' = 1.01 m
Explanation:
given,
mass suspended on the spring, m = 0.40 Kg
stretches to distance, x = 10 cm = 0. 1 m
now,
we know
m g = k x
where k is spring constant
0.4 x 9.8 = k x 0.1
k = 39.2 N/m
now, when second mass is attached to the spring work is equal to 20 J
work done by the spring is equal to


x'² = 1.0204
x' = 1.01 m
hence, the spring is stretched to 1.01 m from the second mass.
<span><span>centic<span>10-2</span></span><span>millim<span>10-3</span></span><span>microu [footnote 2]<span>10-6</span></span><span>nanon<span>10-<span>9
</span></span></span></span>
Answer:
"The distance between crests is 3 cm."
Explanation:
If he writes down "The distance between crests is 3 cm."
That means he is describing the wavelength of a wave and not longitudinal wave. He ought to write something about " direction "
Longitudinal waves are waves in which the displacement of the medium is in the same direction as, or parallel to, the direction of propagation of the wave. While
Wavelength is the distance between the two successfully Crest or trough
Answer:
15.2 s
Explanation:
Convert hp to W:
55.0 hp × 746 W/hp = 41,030 W
Power = energy / time
41030 W = 6.22×10⁵ J / t
t = 15.2 s