1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
13

Which three metals are in the third period (row) of the periodic table?

Physics
2 answers:
Anettt [7]3 years ago
6 0
Sodium, magnesium, and aluminum! 
borishaifa [10]3 years ago
4 0
There are only three metals in the third period are sodium, magnesium, and aluminum.hope this helped
You might be interested in
Round the following off to required number of significant figures.
Stells [14]

Answer:

140

hope this helps

have a good day :)

Explanation:

4 0
2 years ago
Read 2 more answers
An object of mass m is moving down an inclined plane that makes an angle they a with the horizontal and has height h. Which of t
Lera25 [3.4K]
The answer should be B. According to the conservation of energy, the energy cannot be created nor destroyed, but it can be transformed. Since the object is moving down, that means its height is decreasing, causing the potential energy decreasing and the kinetic energy  increasing to fulfill the conservation law. 
4 0
3 years ago
A professional racecar driver buys a car that can accelerate at 5.9 m/s2. The racer decides to race against another driver in a
3241004551 [841]

Answer:

(a) Time will be t = 3.56 sec

(b) Distance traveled by car when they are side by side is 37.38712 m

(b) Velocity of race car = 21.004 m/sec

velocity of stock car = 12.816 m/sec            

Explanation:

We have given acceleration of the car a_1=5.9m/sec^2

Acceleration of the stock car a_2=3.6m/sec^2

When 1st car overtakes the second car then distance traveled by both the car will be same

(a) So s_1=s_2

As both car starts from rest so initial velocity of both car will be 0 m/sec

It is given that stock car leaves 1 sec before

So \frac{1}{2}\times 5.9\times t^2=\frac{1}{2}\times (t+1)^2\times 3.6

After solving t = 3.56 sec

(b) From second equation of motion s=ut+\frac{1}{2}at^2=0\times 3.56+\frac{1}{2}\times 5.9\times 3.56^2=37.38712m

(c) From first equation pf motion v = u+at

So velocity of race car v = 0+5.9×3.56 = 21.004 m/sec

Velocity of stock car v = 0+ 3.6×3.56 = 12.816 m/sec

3 0
3 years ago
A major contemporary learning view of personality which holds that personality traits result from a
DIA [1.3K]

Answer:

21

Explanation:

21 is x because 211211 1 1 1 1  1aghh

3 0
3 years ago
Read 2 more answers
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
3 years ago
Other questions:
  • Match each word to its definition. (Picture should be included)
    6·1 answer
  • Why is my answer incorrect ?
    9·1 answer
  • Which statement best describes the change in an objects momentum if the net force acting on the object is greatly increased ?
    9·2 answers
  • What would an american flag look like if you viewed it through a filter that transmits only red light? what would it look like t
    8·2 answers
  • If a car with a mass of 5Kg, has a momentum of 25kgm/s, how fast is it travelling?
    6·2 answers
  • How do velocities combine
    12·1 answer
  • Match each term to the best description
    5·1 answer
  • The diagram shows the electric field near conducting sphere a which of the following statements is correct
    15·1 answer
  • How fast is the runner moving between 2-3 seconds? Is the other question please help
    13·1 answer
  • Mechanical waves form when a source of energy causes a medium to what
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!