Nitrogen could form 3 covalent bonds if each of its unpaired electrons participates in one bond.
Nitrogen atom forms 3 bonds based on octet rule, because it has 5 valence electrons. That means it needs 3 bonds or three more electrons.
<h3>Further Explanation;</h3><h3>Chemical bond </h3>
- A bond is a type of force that is formed between atoms of different through the sharing or transfer of electrons.
<h3>Octet rule</h3>
- According to the octet rule for an atom to be stable it must have maximum number of electrons in its outermost energy level. Therefore an atom with four electrons requires four more electrons to attain stability.
<h3>Types of chemical bonds.</h3><h3>Covalent bond </h3>
- This is a type of bond that is formed between non-metal atoms. It is formed as a result of sharing electrons between non-metal atoms involved.
- When atoms involved contribute equal number of electrons to the bond formation, the type of bond is known as covalent bond
- A covalent bond may be a dative covalent bond, when the shared electrons come from one atom.
<h3>Ionic bond </h3>
- This is a type of bond that occurs between metal ions and non-metal ions. Ionic bond occurs as a result of transfer of electrons from one metal atom to another non-metal atom.
- After the transfer of electrons, metal atom loses electron to form a cation while the non-metal atom gains electrons to form an anion.
<h3>
Other types of chemical bonds include;</h3>
- Hydrogen bonds
- Metallic bonds
- Dipole-dipole interactions, etc.
Keywords: Chemical bond, covalent bond, atom
<h3>Learn more about:</h3>
Level: High school
Subject: Chemistry
Topic: structure and bonding
Sub-topic: Covalent bond
The important thing to note is the reason why electron react is due to the instability of the electrons. All elements wants to aim the electron configuration of the noble gases. This is the most stable form in which each of the orbitals are sufficiently filled. When it comes to bonding, the order of reactivity is: alkynes > alkenes > alkanes. Alkynes are compounds with triple bonds, alkenes with double bonds and alkanes with single bonds. The single bonds are called saturated hydrocarbons. This is because they have reached stability, so it is quite difficult to react this with reducing or oxidizing agents. Alkynes and alkenes are unsaturated hydrocarbons. They readily react with reducing and oxidizing agents so as to become saturated, as well. The underlying principle for this is that single bonds contain sigma bonds which is the head-on overlapping of electrons. These is the strongest type of covalent bond. Double and triple bonds contain pi bonds which is the side overlapping of electrons orbitals. Hence, these electrons would be easily separated making it more reactive especially during protonation.
This year course engages students in becoming skilled readers of prose written in a variety of periods, disciplines, and
rhetorical contexts and in becoming skilled writers who compose for a variety of purposes. More immediately, the course
prepares the students to perform satisfactorily on the A.P. Examination in Language and Composition given in the spring.
Both their writing and their reading should make students aware of the interactions among a writer’s purposes, audience
expectations, and subjects as well as the way generic conventions and the resources of language contribute to effectiveness
in writing. Students will learn and practice the expository, analytical, and argumentative writing that forms the basis of
academic and professional writing; they will learn to read complex texts with understanding and to write prose of
sufficient richness and complexity to communicate effectively with mature readers. Readings will be selected primarily,
but not exclusively, from American writers. Students who enroll in the class will take the AP examination.
Water (H
2O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "universal solvent" [18][19] and the "solvent of life".[20] It is the most abundant substance on Earth[21] and the only common substance to exist as a solid, liquid, and gas on Earth's surface.[22] It is also the third most abundant molecule in the universe.[21]
Water (H
2O)


NamesIUPAC name
water, oxidane
Other names
Hydrogen hydroxide (HH or HOH), hydrogen oxide, dihydrogen monoxide (DHMO) (systematic name[1]), hydrogen monoxide, dihydrogen oxide, hydric acid, hydrohydroxic acid, hydroxic acid, hydrol,[2] μ-oxido dihydrogen
Identifiers
CAS Number
7732-18-5 
3D model (JSmol)
Interactive image
Beilstein Reference
3587155ChEBI
CHEBI:15377 
ChEMBL
ChEMBL1098659 
ChemSpider
937 
Gmelin Reference
117
PubChem CID
962
RTECS numberZC0110000UNII
059QF0KO0R 
InChI
InChI=1S/H2O/h1H2 
Key: XLYOFNOQVPJJNP-UHFFFAOYSA-N 
SMILES
O
Properties
Chemical formula
H
2OMolar mass18.01528(33) g/molAppearanceWhite crystalline solid, almost colorless liquid with a hint of blue, colorless gas[3]OdorNoneDensityLiquid:[4]
0.9998396 g/mL at 0 °C
0.9970474 g/mL at 25 °C
0.961893 g/mL at 95 °C
Solid:[5]
0.9167 g/ml at 0 °CMelting point0.00 °C (32.00 °F; 273.15 K) [a]Boiling point99.98 °C (211.96 °F; 373.13 K) [6][a]SolubilityPoorly soluble in haloalkanes, aliphaticand aromatic hydrocarbons, ethers.[7]Improved solubility in carboxylates, alcohols, ketones, amines. Miscible with methanol, ethanol, propanol, isopropanol, acetone, glycerol, 1,4-dioxane, tetrahydrofuran, sulfolane, acetaldehyde, dimethylformamide, dimethoxyethane, dimethyl sulfoxide, acetonitrile. Partially miscible with Diethyl ether, Methyl Ethyl Ketone, Dichloromethane, Ethyl Acetate, Bromine.Vapor pressure3.1690 kilopascals or 0.031276 atm[8]Acidity (pKa)13.995[9][10][b]Basicity (pKb)13.995Conjugate acidHydroniumConjugate baseHydroxideThermal conductivity0.6065 W/(m·K)[13]
Refractive index (nD)
1.3330 (20 °C)[14]Viscosity0.890 cP[15]Structure
Crystal structure
Hexagonal
Point group
C2v
Molecular shape
Bent
Dipole moment
1.8546 D[16]Thermochemistry
Heat capacity (C)
75.375 ± 0.05 J/(mol·K)[17]
Std molar
entropy (So298)
69.95 ± 0.03 J/(mol·K)[17]
Std enthalpy of
formation (ΔfHo298)
−285.83 ± 0.04 kJ/mol[7][17]
Gibbs free energy (ΔfG˚)
−237.24 kJ/mol[7]