1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qwelly [4]
3 years ago
5

Program MS. Word digunakan sebagai

Engineering
1 answer:
Anika [276]3 years ago
5 0

Answer:

EnGliSh?

Explanation:

You might be interested in
Need help finding the pats of a transformer (Electronics Science) Any help would be appreciated.
Yakvenalex [24]

Answer:

21 coils

Explanation:

3 0
3 years ago
Read 2 more answers
When calculating a resolved shear stress within a single unit cell, the angle between the applied stress direction and the slip
givi [52]

Answer: 35.3 °

Explanation:

Body-centered cubic lattice (bcc or cubic-I), just like all lattices, has lattice points at the eight corners of the unit cell with an additional points at the center of the cell. It has unit cell vectors a = b = c and interaxial angles α=β=γ=90°.

The simplest crystal structures are those that have present only a single atom at each lattice point.

body-centered cubic unit cell has atoms at each of the eight corners of a cube (like the cubic unit cell) plus one atom in the center of the cube. Each of the corner atoms is the corner of another cube so the corner atoms are shared between eight unit cells. It is said to have a coordination number of 8. The bcc unit cell consists of a net total of two atoms; one in the center and eight eighths from corners atoms

With the use of BCC unit cell, if a applied stress is in [110] direction, but slip applies in [111] direction, the angle between applied direction and slip direction is given as:

[1 1 0] [1 1 1]

λ = Cos^-1 ( 1×1 + 1×1 + 0×1 ÷ (1^2 + 1^2 +0^2) (1^2 + 1^2+ 1^2))

Cos^-1 2/ sqrt 6

= 35.386°

6 0
3 years ago
g For this project you are required to perform Matrix operations (Addition, Subtraction and Multiplication). For each of the ope
Kruka [31]

Answer:

C++ code is explained below

Explanation:

#include<iostream>

using namespace std;

//Function Declarations

void add();

void sub();

void mul();

//Main Code Displays Menu And Take User Input

int main()

{

  int choice;

  cout << "\nMenu";

  cout << "\nChoice 1:addition";

  cout << "\nChoice 2:subtraction";

  cout << "\nChoice 3:multiplication";

  cout << "\nChoice 0:exit";

 

  cout << "\n\nEnter your choice: ";

 

  cin >> choice;

 

  cout << "\n";

 

  switch(choice)

  {

      case 1: add();

              break;

             

      case 2: sub();

              break;

             

      case 3: mul();

              break;

     

      case 0: cout << "Exited";

              exit(1);

     

      default: cout << "Invalid";      

  }

  main();  

}

//Addition Of Matrix

void add()

{

  int rows1,cols1,i,j,rows2,cols2;

 

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  //Taking First Matrix

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  //Printing 1st Matrix

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

  //Taking Second Matrix

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  //Displaying second Matrix

  cout << "\n";

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

  //Displaying Sum of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      cout << "\n";

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]+m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void sub()

{

  int rows1,cols1,i,j,k,rows2,cols2;

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

  cout << "\n";

  //Displaying Subtraction of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]-m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void mul()

{

  int rows1,cols1,i,j,k,rows2,cols2,mul[10][10];

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  cout << "\n";

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  cout << "\n";

  //Displaying Matrix 2

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

     

  if(cols1!=rows2)

      cout << "operation is not supported";

  else

  {

      //Initializing results as 0

      for(i = 0; i < rows1; ++i)

  for(j = 0; j < cols2; ++j)

  mul[i][j]=0;

// Multiplying matrix m1 and m2 and storing in array mul.

  for(i = 0; i < rows1; i++)

  for(j = 0; j < cols2; j++)

  for(k = 0; k < cols1; k++)

  mul[i][j] += m1[i][k] * m2[k][j];

// Displaying the result.

  cout << "\n";

  for(i = 0; i < rows1; ++i)

      for(j = 0; j < cols2; ++j)

      {

      cout << " " << mul[i][j];

      if(j == cols2-1)

      cout << endl;

      }

      }  

  main();

 }

5 0
3 years ago
The total number of species in an area is termed as<br>​
frez [133]

Answer:

biodiversity, also called biological diversity, the variety of life found in a place on Earth or, often, the total variety of life on Earth. A common measure of this variety, called species richness, is the count of species in an area.

#IyotTarzan

5 0
3 years ago
Read 2 more answers
Groups of atoms having the same magnetic polarity are called​
Ainat [17]

Answer:

Magnetic domains..Sorry if I'm wrong..

8 0
3 years ago
Other questions:
  • Select the correct answer.
    11·2 answers
  • How are isometric drawings and orthographic drawings similar?
    10·1 answer
  • Which of the following are rights that workers have under OSHA
    14·2 answers
  • Air-conditioners consume a significant amount of electrical energy in buildings. Split air conditioner is a unitary system where
    5·1 answer
  • Consider the thermocouple and convection conditions of Example 1, but now allow for radiation exchange with the walls of a duct
    8·1 answer
  • An open-open organ pipe is 73.5 cm long. An open-closed pipe has a fundamental frequency equal to the third harmonic of the open
    11·2 answers
  • For which of the following structures would a pile foundation be appropriate? (Select all that apply.)
    7·1 answer
  • because the United States is linked to producers distributors and consumers in other countries it is described as participating
    7·1 answer
  • The scale of the blueprint tells us the<br> of drawing to real space?
    11·1 answer
  • Please help me with this question
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!