Answer:
Electric field, E = 936.19 N/C
Explanation:
It is given that,
Charge 1, 
Charge 2, 
Distance between them, d = 3 mm = 0.003 m
Torque, 
Angle between electric field and line connecting the charge, 
We need to find the torque exerted on the dipole. The torque experienced by the dipole in the electric field is given by :

p is the dipole moment, 



E = 936.19 N/C
So, the magnitude of electric field on the dipole is 936.19 N/C. Hence, this is the required solution.
Answer:
so am i ._. 15 not 1 ofc lol
Explanation:
This bifurcation is called a saddle-node bifurcation. In it, a pair of hyperbolic equilibria, one stable and one unstable, coalesce at the bifurcation point, annihilate each other and disappear.
<h3>What is a bifurcation equilibria?</h3>
- The mathematical study of changes in a family of curves' qualitative or topological structure, such as the integral curves of a family of vector fields or the solutions to a family of differential equations, is known as bifurcation theory.
- A bifurcation happens when a tiny, gradual change in a system's parameter values (the bifurcation parameters) results in an abrupt, "qualitative," or topological change in the system's behavior.
- This term is most frequently used to refer to the mathematical study of dynamical systems.
- Both continuous systems (represented by ordinary, delay, or partial differential equations) and discrete systems can experience bifurcations (described by maps).
To learn more about bifurcation equilibria, refer to
brainly.com/question/14728055
#SPJ4
<h3><u>Answer;</u></h3>
a) 5.00 x 10^8 J
<h3><u>Explanation;</u></h3>
The work done to move the sailboat is calculated through the equation;
W = F x d
where F is force and d is the distance.
Substituting the known values from the given above,
W = (5.00 x 10⁴ N)(10 km)(1000 m/ 1km)
= 5.00 x 10⁸ J
Thus, the work done is <u>5.00 x 10⁸Joules</u>