Answer:
White dwarfs are likely to be much more common. The number of stars decreases with increasing mass, and only the most massive stars are likely to complete their lives as black holes. There are many more stars of the masses appropriate for evolution to a white dwarf.
Answer:
3rd picture straight line going up right
Explanation:
3rd picture
Answer:
a) 
b) 
c) 
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

Therefore, acceleration is 
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement = 
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity = 
3) Earth is about 150 million km from the Sun, and the apparent brightness of the Sun in our sky is about 1,300 watts per square meter. Determine the apparent brightness we would measure for the Sun if we were located five times Earth's distance from the Sun. Answer: The Sun would appear 1/25 times as bright.