Answer:
B. 6HgO → 6Hg + 3O
Explanation:
A decomposition reaction is a reaction in which a single reactant is broken down into 2 or more products.
Answer:
A: The acceleration is 7.7 m/s up the inclined plane.
B: It will take the block 0.36 seconds to move 0.5 meters up along the inclined plane
Explanation:
Let us work with variables and set

As shown in the attached free body diagram, we choose our coordinates such that the x-axis is parallel to the inclined plane and the y-axis is perpendicular. We do this because it greatly simplifies our calculations.
Part A:
From the free body diagram we see that the total force along the x-axis is:

Now the force of friction is
where
is the normal force and from the diagram it is 
Thus
Therefore,

Substituting the value for
we get:

Now acceleration is simply

The negative sign indicates that the acceleration is directed up the incline.
Part B:

Which can be rearranged to solve for t:

Substitute the value of
and
and we get:
which is our answer.
Notice that in using the formula to calculate time we used the positive value of
, because for this formula absolute value is needed.
Answer:
248
Explanation:
L = Inductance of the slinky = 130 μH = 130 x 10⁻⁶ H
= length of the slinky = 3 m
N = number of turns in the slinky
r = radius of slinky = 4 cm = 0.04 m
Area of slinky is given as
A = πr²
A = (3.14) (0.04)²
A = 0.005024 m²
Inductance is given as


N = 248
Here we deal with a lever law. It states that product of force and distance from a fixed point on a lever is equal on both sides.
F₁*d₁ = F₂*d₂
By analysing this formula we can see that applying small force on a great length equals great force on a small length.
To remove nail we need to apply certain force. If we use F₁ for this required force we can see that on other side we need to apply certain force. If we have greater arm length we need smaller force. In a crowbar arm length along which we apply force is greater than length of our arm. This leads to a conclusion that we need smaller force when using crowbar. Depending on the length of a nail it is possible that we need to apply force that is greater than force required to remove nail.
Answer:
A)
B)
Explanation:
Given that
Force = F
Increase in Kinetic energy = 

we know that
Work done by all the forces =change in the kinetic energy
a)
Lets distance = d
We know work done by force F
W= F .d
F.d=ΔKE


b)
If the force become twice
F' = 2 F
F'.d=ΔKE'
2 F .d = ΔKE' ( F.d =Δ KE)
2ΔKE = ΔKE'

Therefore the final kinetic energy will become the twice if the force become twice.