Answer:
D
Explanation:
There are principally three states of matter. These are the solid, liquid and gaseous states. The gaseous state has the highest degree of disorderliness as gas particles can move randomly while the solid state has the highest level of compactness.
Hence, we need to be adequately fed with information as regards the phase change to know if entropy has decreased or increased.
A. is wrong
Evaporation is a change of state to the gaseous state meaning there is an increased entropy.
B. is wrong
Sublimation is a change of state which means a solid substance like iodine or naphthalene changes its state directly to the gaseous state. There is an increased entropy here too.
C is wrong
Melting of ice means going from ice block to liquid water. This is synonymous to going from the solid state to the liquid state which is an increased entropy
D is correct
Condensation involves going from the gaseous state to the liquid state. This means going from a less ordered state to a more ordered state. This is accompanied by an entropy decrease.
E is wrong
While there are some processes that increase entropy, we also have some process that decrease entropy.
Answer:
equal to M
Explanation:
The mass of the fully melted mass and the initial solid will be the same. So, the mass of the melt is equal to M.
Mass is the amount of matter contained within a substance. Since only the phase changed and the amount of matter is still the same, the mass of the molten phase and the solid phase will remain the same.
We are correct to say that in the heating process no mass was destroyed or added in melting the solid.
A simple phase change that preserved the mass only occurred.
In nuclear physics and nuclear chemistry, nuclear fission is either a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits<span> into smaller parts (lighter </span>nuclei<span>). Hope this helps</span>
Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
I believe each oxygen shares 2 elections with the other.