With various extractions the amount of material left in the trash will be lower, ergo the extraction will be more perfect. Various extractions with fewer amounts of solvent are more efficient than a single extraction with a huge amount of solvent.
<u>Explanation:</u>
Surely multiple extractions are better than the single large extraction. Because extraction is about maximizing outside field communication between the two solvents, and you easily get more surface area contact with fewer amounts.
You can merge two smaller portions quicker and more completely than with large portions.
Why did you post this again? Because you're lazy and wanted people to not see my post? Once again, ONE QUESTION AT A TIME. We're here to help you with a tough question or work you through it, not do all your homework.
Answer:
Explanation:
So, the formula for the compound should be:

Now we assume that we have 1 mol of substance, so we can make calculations to know the molar mass of element X, as follows:

So we have that 6 moles weight 212.7g, and we can make a rule of three to know the weight of compound X:

As we used 1 mol, we know that the molar mass is 32.06g/mol
So the element has a molar mass of 32.06 g/mol and an oxidation state of +6, with this information, we can assure that the element X is sulfur, so the compound is 
A) Double replacement
Because the reactants switch when they become products