Elements Y and elements Z would have similar properties due to the fact that they both posses the same number of valence electrons. They both have a single valence electron that determines the corresponding elements bonding properties and the fact that it can either donate 1 valence electron to produce an ion that would be attracted to another atom, that is also an ion. Assuming that these elements are group 1 elements, they do not undergo in covalent bonding.
Answer:
This unit has encouraged a deeper understanding of the world and it's guiding principles. While it was initially challenging for me to determine if a change was physical or chemical, this unit provided me with the information necessary to determine the type. With this knowledge, I can now interrelate with other properties and believe that this new ability will assist in future units as well. Thank you!
Explanation:
Answer:
2
Explanation:
In two reactions energy is released.
1) C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂ + heat
It is cellular respiration reaction.It involves the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
2) 2H₂ + O₂ → 2H₂O ΔH = -486 kj/mol
The given reaction is formation of water. In this reaction oxygen and hydrogen react to form water and 486 kj/mol is also released.
The reaction in which heat is released is called exothermic reaction.
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Explanation:
rbrhrhyhggggsdffffffffffv
Answer: 6.48m/s
Explanation:
From the question given, we obtained the following:
M = 50 kg
Velocity =?
Momentum = 324 kg•m/s
Momentum = Mass x Velocity
Velocity = momentum /Mass
Velocity = 324 / 50
Velocity = 6.48m/s