Answer:
Cohesive forces are greater than adhesive forces
Step-by-step explanation:
The attractive forces between water molecules and the wax on a freshly-waxed car (adhesive forces) are quite weak.
However, there are strong attractive forces (cohesive forces) between water molecules.
The water molecules are only weakly attracted to the wax, so the cohesive forces pull the water molecules together to form beads
.
Root mean square velocity is the square root of the mean of the squares of speeds of different molecules. From kinetic theory of gas, the formula of root mean square velocity=C
= √
=√
=√
, where, R= Universal gas constant, T= Absolute temperature, P= Pressure, V= Volume of gas, d= Density of gas.
Given, T=273 K, P=1.00 x 10⁻² atm, d=1.24 x 10⁻⁵ g/cm³.
(a) Using the formula
=√
=√(3X1.00X10⁻²)/(1.24X10⁻⁵)=49.18
(b) Molar mass can be determined by using the formula
=√{3RT}{M}
49.18=√
49.18²=√(3X8.314X273)/M
M=
M=1.67 ≅ 2
Molecular mass is 2.
(c) The gas is Helium (He) whose molecular mass is 2.
Answer :
The concentration of
before any titrant added to our starting material is 0.200 M.
The pH based on this
ion concentration is 0.698
Explanation :
First we have to calculate the concentration of
before any titrant is added to our starting material.
As we are given:
Concentration of HBr = 0.200 M
As we know that the HBr is a strong acid that dissociates complete to give hydrogen ion
and bromide ion
.
As, 1 M of HBr dissociates to give 1 M of 
So, 0.200 M of HBr dissociates to give 0.200 M of 
Thus, the concentration of
before any titrant added to our starting material is 0.200 M.
Now we have to calculate the pH based on this
ion concentration.
pH : It is defined as the negative logarithm of hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Thus, the pH based on this
ion concentration is 0.698
Answer:
Present in both catabolic and anabolic pathways
Explanation:
Glyceraldehyde-3-phosphate abbreviated as G3P occurs as intermediate in glycolysis and gluconeogenesis.
In photosynthesis, it is produced by the light independent reaction and acts as carrier for returning ADP, phosphate ions Pi, and NADP+ to the light independent pathway. Photosynthesis is a anbolic pathway.
In glycolysis, Glyceraldehyde-3-phosphate is produced by breakdown of fructose-1,6 -bisphosphate. Further Glyceraldehyde-3-phosphate converted to pyruvate and pyruvate is further used in citric acid cycle for energy production. Therefore, it is used in catabolic pathway too.
Glyceraldehyde-3-phosphate is an important intermediate molecule in the cell's metabolic pathways because it is present in both catabolic and anabolic pathways.