Zn(s) + 2CH3COOH(aq) → (CH3COO)2Zn(aq) + H2(g)<span>
</span>
Using the formula:
F = k.q1.q2/r2
Manipulating for r.
<span>r = √(Kq1q2/F)
r = </span><span>1.5 x 10^-2 meters</span>
Answer: The given statement is true.
Explanation:
Chemical bonds are defined as the bonds formed due to interaction of electrons of two same or different atoms. Basically, these electrons are physically attracted towards each other because of which either sharing or transfer of electrons tend to take place.
For example, Cl has 7 valence electrons and sodium has 1 valence electron. In order to gain stability when both sodium and chlorine will come closer then Cl will attract one electron from sodium leading to the formation of a new compound NaCl.
Thus, we can conclude that the statement chemical bonds are physical attractions between atoms resulting from the interaction of their electrons, is true.
Answer:
Most radioactive materials decay and they mostly have a decay rate. The time it takes for half of a radioactive material to decay is called half life.
The 7 minute significance of half-life simply points to the total time it takes after which half of the radioactive material would have completely decayed,
Answer:
Answers are in the explanation.
Explanation:
- The half‑life of A increases as the initial concentration of A decreases. order: <em>2. </em>In the half-life of second-order reactions, the half-life is inversely proportional to initial concentration.
- A three‑fold increase in the initial concentration of A leads to a nine‑fold increase in the initial rate. order: <em>2. </em>The rate law of second-order is: rate = k[A]²
- A three‑fold increase in the initial concentration of A leads to a 1.73‑fold increase in the initial rate. order: <em>1/2. </em>The rate law for this reaction is: rate = k √[A]
- The time required for [A] to decrease from [A]₀ to [A]₀/2 is equal to the time required for [A] to decrease from [A]₀/2 to [A]₀/4. order: <em>1. </em>The concentration-time equation for first-order reaction is: ln[A] = ln[A]₀ - kt. That means the [A] decreasing logarithmically.
- The rate of decrease of [A] is a constant. order: <em>0. </em>The rate law is: rate = k -<em>where k is a constant-</em>