The working equation for this is: E = F/Q, where E is the strength of electric field, F is the force and Q is the charge. The force is equal to:
F = mg = (0.13/1000 kg)(9.81 m/s²) = 1.2753×10⁻³ N
The charge of he excess electrons is equal to:
Q = (-1.6021766208×10⁻¹⁹ C/electron)(1×10¹⁰ electrons)
Q = -1.6021766208×10⁻⁹ C
E = 1.2753×10⁻³ N/-1.6021766208×10⁻⁹ C
E = -795,979.66 N/C
<span>Among the choices provide, the one statement that is true with regards to a charged atom is C, the number of protons and the number of electrons within the same atom are unequal. A charged atom is called an ion. Atoms are nonpartisan since they have similar quantities of positive and negative charges.</span>
Explanation:
Final velocity=Initial velocity+(acceleration×time)
4 ways to find initial velocity:
1) Initial velocity=Final velocity-(acceleration×time)
2) Initial velocity=(Distance/Time)-((acceleration×time)/2)
3) Initial velocity=√Final velocity-(2×(acceleration×distance))
4) Initial velocity=2(distance/time)-Final velocity
Total force = Mass×Acceleration
(F=ma)
Answer:
a = 16 m/s²
General Formulas and Concepts:
<u>Dynamics</u>
Newton's Law of Motions
- Newton's 1st Law of Motion: An object at rest remains at rest and an object in motion stays in motion
- Newton's 2nd Law of Motion: F = ma (Force is equal to [constant] mass times acceleration)
- Newton's 3rd Law of Motion: For every action, there is an equal and opposite reaction<u>
</u>
Explanation:
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] F = 22000 N
[Given] m = 1375 kg
[Solve] a
<u>Step 2: Find Acceleration</u>
- Substitute in variables [Newton's 2nd Law of Motion]: 22000 N = (1375 kg)a
- Isolate <em>a</em>: 16 m/s² = a
- Rewrite: a = 16 m/s²
Look for scientific research about whether these claims are correct or not.
Explanation:
The best thing to do after reading this advertisement is to look for scientific research about whether these claims are correct or not.