Answer: sodium amide undergoes an acid -base reaction
Explanation:
sodium amide is a ionic compound and basically exists as sodium cation and amide anion. Amide anion is highly basic in nature and hence as soon as there is amide anion generated in the solution , Due to its very pronounced acidity it very quickly abstracts the slightly acidic proton available on methanol.
This leads to formation of ammonia and sodium methoxide.
Hence sodium amide reacts with methanol and abstracts its only acidic proton and form ammonia and sodium Methoxide.
Hence the 3rd statement is a corrects statement.
So we cannot use methanol for sodium amide because sodium amide itself would react with methanol and the inherent molecular natur of sodium amide would then change.
The 1st and 2nd statements both are incorrect because both the compounds methanol as well as sodium amide have dipole moments and hence are polar molecules.
The 4th statement is also incorrect as both the molecules have dipole moment and hence there would be ion-dipole forces operating between them.
The following reaction occurs:
NaNH₂+CH₃OH→NH₃+CH₃ONa
The answer should be; 11
The atomic mass number is found by combining the number of protons and neutrons
Hope this helps :)
The atomic mass or relative isotopic mass refers to the mass of a single particle, and therefore is tied to a certain specific isotope of an element. The dimensionless standard atomic weight instead refers to the AVERAGE of atomic mass values of a typical naturally-occurring mixture of isotopes for a sample of an element.
You can count it by yourself using formula
m = ({first isotopic distribution%}× {first atomic.mass})+ ({second isotopic distribution%}× {second atomic.mass}) / {100}
Any colloid consisting of a solid dispersed in a gas is called a smoke. A liquid dispersed in a gas is referred to as a fog. So the answer would be smoke